1)Дано:тр.АВС,угол С=90 гр,СД-высота,угол АСД=4угламДСВ.
Найти:угол А,угол В.
Решение:
1)пусть угол ДСВ=х гр,тогда угол АСД=4х гр.
х+4х=90
5х=90
х=18
Значит,угол ДСВ=18 гр,угол АСД=72 гр.
2)угол А=90-72=18(гр);угол В=90-18=72(гр).
2)
треугольник АМВ прямоугольный,угол М=90градуссов,угол МВА=30 градуссов,АМ=половине АВ,так как катет лежит против угла в 30 градуссов,АМ=9 см
По теореме Пифагора можем найти ВМ,АВ в квадрате= АМ в квадрате +ВМ в квадрате
ВМ= корень квадратный из АВ в квадрате минус Ам в квадрате
ВМ=9 корней из 3 см
Основания - правильные треугольники. О₁ - центр верхнего основания (точка пересечения медиан (биссектрис, высот)), О - центр нижнего основания.
Пусть Н - середина В₁С₁, тогда О₁Н - радиус окружности, вписанной в треугольник А₁В₁С₁.
О₁Н = а√3/6 = 6√3/6 = √3 см
Пусть К - середина ВС, тогда ОК - радиус окружности, вписанной в треугольник АВС:
ОК = 12√3/6 = 2√3 см.
ОО₁ - высота пирамиды, тогда
ОО₁⊥ВС и АК⊥ВС, т.е. ребро ВС перпендикулярно двум пересекающимся прямым плоскости АКН, значит
ВС⊥(АКН)
Тогда ВС⊥КН, ∠НКА = 30° и НК - апофема пирамиды.
Sбок = (P₁ + P₂) · HK, где P₁ и P₂ - периметры оснований.
Осталось найти НК.
ОО₁НК - прямоугольная трапеция. Проведем в ней высоту НТ.
ОО₁НТ - прямоугольник, ОТ = О₁Н = √3 см
ТК = ОК - ОТ = 2√3 - √3 = √3 см
ΔНТК: cos 30° = TK / HK
HK = TK / cos 30° = √3 / (√3/2) = 2 см
Sбок = (P₁ + P₂) · HK = (6 ·3 + 12 · 3) · 2 = (18 + 36) · 2 = 54 · 2 = 108 см²
2) Будут;
3) Будут;
4) Не будут.
1) Углы, лежащие накрест, при прямых параллельных будут равны.
2) Сумма односторонних углов = 180.
3) Углы, лежащие накрест, при прямых параллельных будут равны.
4) Углы, лежащие накрест, при параллельных прямых ДОЛЖНЫ БЫТЬ равны, а тут не равны, отсюда и вывод.