У медианы есть такая устойчивая привычка - она делит треугольник на два меньших, равной площади.
Поэтому если ab=bc, а также сторона bd общая для обоих треугольников, а также известно что они имеют равные площади, то следовательно и их третьи стороны, соответственно ad и dc будут тоже равны между собой на основании формулы Герона. Следовательно, раз все три стороны треугольников равны, то и они сами тоже равны.
1.Основными геометрическими фигурами на плоскости являются точка и прямая. 2.Положение точки на каждом из лучей задается ее координатой. Чтобы отличить друг от друга координаты на этих лучах, условились ставить перед координатами на одном луче знак « + », а перед координатами на другом луче знак « — ». 3.В месте раздела плоскостей прерывается область интегрирования по площади и неопределенный интеграл вырождается в определенный. Разбиение разрывает непрерывную корреляцию между функцией и аргументами кривой, проходящей по обеим плоскостям, если вторая производная - не ноль.
Дан квадрат АВС1Д1. О1О2 - ось цилиндра. АВ⊥О1О2. Диагонали квадрата пересекаются наоси цилиндра в точке О. Через точку О проведём отрезок РЕ║АД1. ∠О2ОЕ=α. Сторона квадрата равна а. АЕ=ЕВ=а/2. Построим плоскость перпендикулярно оси О1О2, проходящую через сторону АВ. Проекция квадрата АВС1Д1 на эту плоскость будет прямоугольник АВСД. Диагонали прямоугольника АВСД пересекаются на оси цилиндра в точке М. Половина диагонали этого прямоугольника и есть радиус цилиндра. АМ=R. В тр-ке ЕОМ ЕМ=ОЕ·sinα=a·sinα/2 (ОЕ=РЕ/2=а/2). В тр-ке АМЕ АМ²=АЕ²+ЕМ²=(а²/4)+(а²sin²α/4)=2a²sin²α/4. AM=a√2·sinα/2 ответ: радиус цилиндра
Поэтому если ab=bc, а также сторона bd общая для обоих треугольников, а также известно что они имеют равные площади, то следовательно и их третьи стороны, соответственно ad и dc будут тоже равны между собой на основании формулы Герона. Следовательно, раз все три стороны треугольников равны, то и они сами тоже равны.