Вравнобедренном треугольнике авс к основанию ас проведена биссектриса вd, равная 7 см. найдите периметр треугольника авс, если периметр треугольника авd равен 18 см.
Смотри, тк. периметр это сумма всех сторон, то перим. авс = ав+ад+дс+вс. АВ+АД=18-7=11. Т.к треугольники авд и двс равны, то вс+дс=11. умма всех сторон=ав+ад+вс+дс=11+11=22.
вот смотри, тк. периметр это сумма всех сторон, то перим. авс = ав+ад+дс+вс. АВ+АД=18-7=11. Т.к треугольники авд и двс равны, то вс+дс=11. сумма всех сторон=ав+ад+вс+дс=11+11=22.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Задание 1. Доказать, что диагонали делят параллелограмм на 4 равновеликих треугольника. Доказательство. Диагонали параллелограмма точкой пересечения делятся пополам. Пусть половина первой диагонали = а, а половина второй диагонали = b. Значит площадь каждого из получившихся треугольников равна (1/2)a*b*Sinα - формула, где α - угол между диагоналями. Углы, образованные при пересечении диагоналей - смежные и равны α и 180-α. Поскольку Sin(180-α) = Sinα (формула), то площади всех 4 треугольников равны. Что и требовалось доказать. Задание 2. Найти площадь равнобокой трапеции с основаниями 15 см и 39 см, в которой диагональ перпендикулярна к боковой стороне. Решение. Поскольку высота из тупого угла равнобедренной трапеции делит основание на отрезки, меньший из которых равен полуразности оснований = 12см (свойство), а высота нашей трапеции - высота прямоугольного треугольника из прямого угла, то эта высота по ее свойствам равна h=√((39-12)*12)=18см. Тогда площадь трапеции равна по формуле S=(AD+BC)*h/2 : S=(39+15)*18/2=486см². Задание 3. Соответствующие стороны двух подобных треугольников относятся как 2 : 3. Площадь второго треугольника равна 81 см2. Найдите площадь первого треугольника. Площади подобных треугольников относятся как квадрат коэффициента подобия. Значит S1=(2/3)²*S2. S1=(4/9)*81=36см². Задание 4. Основания трапеции относятся как 2:3, а ее площадь равна 50 см2. Найти площади: а) двух треугольников, на которые данная трапеция делится диагональю б) четырех треугольников, на которые данная трапеция делится диагоналями. Решение. Диагонали трапеции делят ее на 4 треугольника, из которых два, прилежащих к основаниям, подобны, а два прилежащих к боковым сторонам, равновелики (равны по площади). а). Sabcd=(2x+3x)*h/2 =50см² (площадь трапеции дана). => 5xh=100см² и xh=20см². Sabd=Sacd=(1/2)*3xh = 30см². Sabo=Scod= Sabcd-Sabd= 50-30=20см². ответ: 30см² и 20см². б) Sboc=(1/2)*2x*(2/5)h=0,4*xh =0,4*20=8см². Saod=(1/2)*3x*(3/5)h=0,9*xh =0,9*20=18см². Saob=Saod=Sabd-Scod=(1/2)*3xh - 0,9*xh = 06xh =12см². ответ: Sboc=8см²,Saod=18см², Saob=Saod=12см².
ответ:22 см