Через сторону ас треугольника авс ( угол с = 90) проведена плоскость альфа. вв1 перпендикулярна альфе, св1 перпендикулярна ас, ав=25,ас= 24. найти площадь треугольника ав1с
Пусть x — угол при основании, другой угол при основании тоже х, тогда угол между боковыми сторонами — 3х. Всего получается 5х. Так как сумма углов треугольника равна 180 градусов, тогда составляем уравнение.
5х=180 х=180:5 х=36 градусов
Угол при основании равен 36 градусов, соответственно, равный ему угол при основании тоже 36 градусов. Угол между боковыми сторонами равен 3х, значит 3 умножить на 36 и это равно 108 градусов. ответ: Углы при основании по 36 градусов, угол между боковыми сторонами 108 градусов.
Пусть x — угол при основании, другой угол при основании тоже х, тогда угол между боковыми сторонами — 3х. Всего получается 5х. Так как сумма углов треугольника равна 180 градусов, тогда составляем уравнение.
5х=180 х=180:5 х=36 градусов
Угол при основании равен 36 градусов, соответственно, равный ему угол при основании тоже 36 градусов. Угол между боковыми сторонами равен 3х, значит 3 умножить на 36 и это равно 108 градусов. ответ: Углы при основании по 36 градусов, угол между боковыми сторонами 108 градусов.
задача некорректная, ответ зависит от угла между плоскостями ABC и AB1C,
Площадь ABC считается элементарно, отчет будет равен этой площади, умноженной на косинус угла между плоскостями (он же - угол ВСВ1).