Угол ВАС = 30 градусов
Угол ВСА = 30 градусов
Угол АВС = 120 градусов
Объяснение:
Высота делит треугольник на два равных прямоугольных треугольника BDC и BDA, если меньший катет лежит против угла в 30 градусов значит этот катет равен половине гипотенузы, в треугольнике BDC, ВС - гипотенуза
ВС=25,6 по условию, BD - меньший катет BD= 12,8 по условию, как мы видим меньший катет равен половине гипотенузы, значит угол С=30 градусов, теперь надо найти угол DBC, сумма углов любого треугольника составляет 180 градусов, в нашем треугольнике угол D=90 градусов(так как прямой), угол С = 30 градусов(мы нашли выше), значит угол DBC=180-90-30=60 градусов
Угол С=30 градусов
Угол А=30 градусов (так как треугольник равнобедренный, значит и углы прилежащие к основанию равны)
Угол В=60+60=120 градусов
Дано: АВСД - трапеция, АВ=СД, АД=16√3, ∠А=∠Д=60°, АС⊥СД. Найти S(АВСД).
Решение: Проведем высоту СН, тогда S(АВСД)=(ВС+АД):2*СН.
Рассмотрим ΔАСД - прямоугольный, ∠Д=60°, тогда ∠САД=90-60=30°, а СД=1\2 АД=16√3:2=8√3.
Диагональ АС перпендикулярна к боковой стороне и делит угол А пополам, значит большее основание трапеции в два раза больше меньшего основания и её боковых сторон; и высота трапеции равна половине её диагонали.
СД=ВС=16√3:2=8√3;
АС²=(16√3)²-(8√3)²=768-192=576; АС=√576=24.
СН=1\2 АС=24:2=12.
S(АВСД)=(8√3+16√3):2*12=144√3 (ед²).
ответ: 144√3 ед²
Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.