Сделаем иллюстрацию. Примем, что О находится внутри треугольника.
Тогда ОА, ОВ и ОС - радиусы окружности. Раз ОВС равно 55, а ОВ=ОС, то треугольник ОВС равнобедренный и угол ОСВ тоже 55. Значит угол ВОС = 180-55-55=70
Теперь обозначим оставшиеся углы: АВО=ВАО=х, АСО=САО=у, АОВ=k, АОС=m. Составим систему уравнений:
1) 70+k+m=180 - для углов вокруг точки О
2) 2*55+2х+2у=180 - сумма углов треугольника АВС
3) k+2х=180 - сумма углов треугольника АВО
4) m+2у=180 - сумма углов треугольника АСО
Решаем систему:
Из (3): k=180-2x
Из (4): m=180-2у
Подставляя в (1): 70+180-2х+180-2у=180
2х+2у=70
Записываем (2): 2х+2у=70
Получились тождественно равные уравнения. Отсюда 2(х+у)=70, (х+у)=35
Посмотрим на рисунок - искомый нами угол и равен х+у. Значит, он равен 35 градусов
Насчёт решения для случая, когда О лежит вне окружности - не уверен, а проверять несколько лень
A( 1; 2; 3 ), B(6; 3; 6 ), С(- 2; 5; 2).
Находим координаты середин сторон треугольника::
- точка А1 (середина ВС): ((6-2)/2=2; (3+5)/2=4; (6+2)/2=4) = (2; 4; 4).
- точка В1 (середина АС): ((1-2)/2=-0,5; (2+5)/2=3,5; (3+2)/2=2,5 = (-0,5; 3,5; 2,5).
- точка С1 (середина АВ): (1+6)/2=3,5; (2+3)/2=2,5; (3+6)/2=4,5) = (3,5; 2,5; 4,5).
Теперь находим длины медиан:
|АА1| = √((2-1)² + (4-2)² + (4-3)²) = √(1 + 4 + 1) = √6 ≈ 2,44949.
|ВВ1| = √((-0,5-6)² +(3,5-3)² + (2,5-6)²) =√( 42,25 + 0,25 + 12,25) = √54,75 ≈ 7,399324.
|CC1| = √((3,5-(-2))² + (2,5-5)² + (4,5-2)²) = √(30,25 + 6,25 + 6,25) = √42,75 ≈ 6,53834.