Найдем величину тупого угла ромба. (360-60*2):2=120. Т.к. сумма всех углов равна 360, и противоположные углы равны. Проведем диагональ ромба, соединяющую два его тупых угла. Диагональ ромба является биссектриссой. Т.о. эта диагональ разделила наш ромб на два раносторонних треугольника, т.к. все углы получились по 60 градусов, значит треугольник равносторонний. В равностороннем треугольнике высота является медианой. Медиана делит противоположную сторону на два равных отрезка Значит длины отрезков на которые высота разделила сторону равны 32:2=16
Сумма углов,прилежащих к одной стороне параллерограмма, равна 180°. Значит, острый угол равен 180-135=45°; Высота, боковая сторона и половина стороны, на которую опущена высота образуют прямоугольный треугольник. В этом треугольнике два острых угла равны по 45°,значит этот треугольник равнобедренный. Боковые стороны равны, значит половина стороны на которую опущена высота равна этой высоте и равна 4 см. А вся эта сторона равна 4*2=8 см; Боковая сторона параллерограмма равна: а²=4²+4²; а=√32=4√2 см; Периметр равен Р=8+8+4√2+4√2=16+8√2 см; Площадь равна: S=4*8=32 см²;