Ні, не може. Припустимо, що може бути таки варіант для АВСD чотирикутника, при якому три вершини його А, В і D належать площині α, а вершина С - ні. Проведемо діагоналі АС і ВD. Діагоналі перетинаються в точці О. Оскільки B∈α і D∈α, то ВD належить α, а тому і точка О належить α. Оскільки А∈α і О∈α, то АО належить α. Оскільки точка С належить прямій АО, а пряма АО належить площині α, то і точка С належить площині α. Тому наше припущення не вірне. Не можуть тільки три вершини чотирикутника АВСD належати площині α. Всі чотири лежать в α.
Если третья сторона будет=1 см, то не получится неравенство: 1см+1см= 2 см, тогда 3см>2 см, а должно быть<. Если третья сторона = 2 см, то неравенство опять не получится: 2+1=3, тогда 3=3, так тоже не может быть, т.к. одна из сторон треугольника должна быть меньше суммы двух других сторон. Если третья сторона =3 см, тогда 1+3=4, 3<4, неравенство выполняется, 3+3=6, 3<6- неравенство получается. Возьмем 4 см: 3+1=4, 4=4- не получается, значит и в последующих числах не получится. ответ: 3 см
NK = 12
ответ: 12