Дано: Решение:
∠AOB = 1/9 ∠BOC ∠AOB = ∠COD и ∠BOC = ∠DOA как
вертикальные углы при пересекающихся
Найти: ∠AOB; ∠BOC; прямых.
∠COD; ∠DOA Тогда: ∠AOB = ∠COD = х
∠BOC = ∠DOA = 9х
Сумма всех 4-х углов - 360°
2*(х + 9х) = 360
10х = 180
х = 18 9х = 162
∠AOB = ∠COD = 18°
∠BOC = ∠DOA = 162°
Может так ?
1=-2k+b
-3=2k+b
прибавим
-2=1b
b=-1
1=-2k-1
-2k=2
k=-1
Так как прямые перпендикулярны,то произведение коэффициентов должно равняться -1,значит коэффициент 2-ой прямой равен 1
Из условия AN:NB=3:1 следует,что
(xN-xA)/(xB-xN)=3 U (yN-yA)/(yB-yN)=3
(xN+2)/(2-xN)=3⇒xN+2=6-3xN⇒4xN=4⇒xN=1
(yN-1)/(-3-yN)=3⇒yN-1=-9-3yN⇒4yN=-8⇒yN=-2
Подставим координаты точки в уравнение y=kx+b
-2=1*1+b⇒b=-3
Уравнение прямой, которая перпендикулярна прямой АВ и пересекает отрезок АВ в точке N такой, что AN:NB=3:1 будет
у=х-3