H - высота, s - площадь боковой поверхности, p - периметр основания (a+b+c), S - площадь полной поверхности, Sо - площадь основания s=p*H => H=s/p S=s+2So So=(a*b)/2=5*12/2=30 s=S-2So=360-2*30=300 По теореме Пифагора c^2=a^2+b^2 c^2=144+25=169 с=13 p=a+b+c=12+5+13=30 H=300/30=10
"Умножение катет" это видимо их произведение? a+b+c=30 ab=60 Вспоминаем теорему Пифагора: a²+b²=c² Прибавляем к обеим частям 2ab: a²+2ab+b²=c²+2ab (a+b)²=c²+120 Для удобства заменим a+b на х: х²=с²+120 Или: с²=х²-120 Но в то же время a+b+c=30, или х+с=30 с=30-х с²=(30-х)²=900-60х+х² Приравниваем два выражения для квадрата гипотенузы: х²-120 = 900-60х+х² 60х = 1020 х=17 Итак, мы знаем: a+b=17 ab=60 Выражаем:a = 17-b (17-b)b=60 17b-b²=60 b² - 17b + 60 = 0 D = 289 - 4*60 = 49 = 7² b = (17+-7)/2 = {12;5} Собственно мы и получили пару возможных значений - или a=5, b=12, или наоборот, это неважно.
Дан правильный тетраэдр ABCD, ребро которого равно а, DO-высота тетраэдра, М-середина DO.
Высота DO равна а√2/√3 (это свойство правильного тетраэдра). Точка О делит высоту АЕ основания в отношении 2:1 от вершины. АЕ = а*cos 30° = a√3/2. Тогда отрезки АО и ОЕ равны: АО = (2/3)*(a√3/2) = a√3/3, ОЕ = (1/3)*(а√3/2) = а√3/6. Примем длину МО = х. Из подобных треугольников AMO и AFE составляем пропорцию: х/АО = EF/AF. Так как EF = OE, а AF = DO, то пропорция примет вид: х/(а√3/3) = (а√3/6)/(а√2/√3). Отсюда значение х равно: х = (а√3)/(6√2) = (а√6)/12 = (а√2)/(4√3) = OD/4. Получаем ответ на вопрос - г) в каком отношении плоскость сечения делит высоту тетраэдра AF,считая от А? ответ: DM:MO = 3:1.
Сечение через точку М, параллельное плоскости ВСD, пересекает АЕ в точке Т, которая делит ОЕ пополам. Тогда АТ = (5/6)АЕ и треугольник в полученном сечении имеет коэффициент подобия к треугольнику ВСД, равный 5/6.
Площадь подобного треугольника NКР в сечении равна площади ВСД, умноженной на квадрат коэффициента подобия. S(BCD) = (1/2)BC*DE = (1/2)a*(a√3/2) = a²√3/4. S(NKP) = (a²√3/4)*(25/36) = a²*25√3/144.
s₁ = 2*1/2*5*12 = 60
гипотенуза
с = √(5²+12²) = √(25+144) = √169 = 13
периметр
p = 5+12+13 = 30
и площадь боковой поверхности
s₂ = 30h
---
s₁+s₂ = 360
60+30h = 360
30h = 300
h = 10