100 окружность с диаметром ad = 10 касается меньшего основания вс трапеции авсd и пересекает боковые стороны трапеции в их серединах- точках к и м. найти углы трапеции при основании аd и длину отрезка км.
1)Пусть С- прямой угол в прямоугольном треугольнике АВС, тогда СН-высота проведенная к гипотенузе, СМ- биссектриса,проведенная к гипотенузе. 2)По условию сказано, что угол между СМ и СН равен 15 градусов. 3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам. 4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника). 5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника) 6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см 7) По теореме Пифагора СВ= 3 корня из 3 ответ: 3 и 3корня из 3
№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
найдём стороны треугольника OCD (нам нужны квадраты сторон)
OC² = 5²+x²
OD² = 5²
CD² = 5²+(5-x)² = 25+25-10x+x² = x²-10x+50
и есть такая чудесная формула для длины медианы треугольника по его сторонам
m = 1/2√(2a²+2b²-c²)
или
4m² = 2a²+2b²-c²
Медиана OM = 5
4*25 = 2*(5²+x²) + 2*5² - (x²-10x+50)
100 = 50 + 2x² + 50 - x² + 10x - 50
50 = x² + 10x
x² + 10x - 50 = 0
D = 100+200 = 300
x₁ = (-10-10√3)/2 - отрицательные корни не интересны
x₂ = (-10+10√3)/2 = 5(√3-1)
средняя линия
КМ = 1/2(10-10+10√3)=5√3
угол при основании найдём из треугольника CED
tg∠D = CE/ED = 5/(5-x) = 5/(5+5-5√3) = 1/(2-√3) = (2+√3)/(4-3) = 2+√3
∠D = arctan(2+√3) = 5π/12 = 75°
Готово :)