Меньшая окружность проходит через 3 вершины, одна из который - острый угол, а две - вершины тупых углов. Острый угол является вписанным в эту окружность. И, наоборот, большая окружность проходит через вершину острого угола, потом- тупого, и - опять острого. В большую окружность вписан тупой угол.
r = 3; R = 4; a = ?
Обозначим за Ф половину тупого угла ромба. В треугольнике, вписанном в малую окружность, это будет острый угол, противолежащий стороне а;
Тогда по теореме синусов
a = 2*r*sin(Ф); sin(Ф) = a/(2*r);
Для тупоугольного равнобедренного треугольника, вписанного в большую окружность, угол при основании (противолежащий стороне а) равен (180 - 2*Ф)/2 = 90 - Ф;
Поэтому по той же теореме синусов
a = 2*R*sin(90 - Ф) = 2*R*cos(Ф); cos(Ф) = a/(2*R);
Осталось возвести это в квадрат и сложить
1 = a^2/(2*r)^2 + a^2/(2*R)^2; (2/a)^2 = 1/r^2 + 1/R^2;
Подставляем r = 3; R = 4; получаем а = 24/5
ABCD - ромб
AC = 6 см
AB = 5 см
Найти:
BD, Sabcd
Решение:
BD = BO + OD //O - точка пересечения диагоналей//
BO = OD (по свойству параллелограмма)
По теореме Пифагора AO² + BO² = AB²
AO = AC / 2 = 3
9 + BO² = 25
BO = 4 см
OD = OB = 4 см
BD = 4 + 4 = 8 см
Sabcd = BD * AC * 0.5 = 48 / 2 = 24 см²
ответ: BD = 8 см; Sabcd = 24 см²