Через вершину конуса под углом 60 градусов к основанию проведена плоскость сечением конуса данной плоскостью является треугольник с углом 60 градусов найдите отношение площади сечения к площади боковой поверхности конуса
РО=ТО=РТ - равносторонний, с углами по 60°, для определённости примем длину стороны этого треугольника за единицу площадь сечения S₁ = 1/2*1*1*sin(60°) = √3/4 Площадь боковой поверхности конуса S₂ = π·r·l где r - радиус основания, l - образующая, у нас l=1, радиус будем искать. Площадь треугольника ОРТ через основание и высоту S₁ = 1/2*РТ*ОВ = 1/2*1*ОВ = √3/4 ОВ = √3/2 Теперь с треугольником ОВН ОН/ОВ = sin(60°) ОН = OВ*sin(60°) = √3/2*√3/2 = 3/4 Теперь с треугольником ОТН ТН² + ОН² = ОТ² ТН² + (3/4)² = 1² ТН² = 7/16 ТН = √7/4 --- S₂ = π·√7/4·1 = π√7/4 И требуемое отношение S₁/S₂ = √3/4/(π√7/4) = √3/(π√7)
В треугольнике ABC из вершины B опустим высоту BС на сторону AC.Получим треугольник BC с углом C= 60 градусов, углом CDB=90 градусов и углом DBC=30 градусов.Его гипотенуза BC=6 см, значит, катет DC=3 см (лежит в прямоугольном треугольнике против угла 30 градусов и равен половине длины гипотенузы).Катет BD=корень квадратный(BC^2-DC^2)=корень квадратный(36-9*) =3*корень квадратный(3)AD=AC-DC=1 смИз прямоугольного треугольника ABDAB=корень квадратный(AD^2+BD^2)=корень квадратный(28)=2*корень квадратный(7) см
Признак подобия треугольников: "Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол, пропорциональны в равном отношении, то такие треугольники подобны". В нашем случае наименьший угол треугольника лежит против меньшей стороны. Значит в треугольнике КLM этот угол лежит против стороны 2 см. Прилегающие к этому углу стороны равны 3см и 4см. В треугольнике АВС стороны, прилегающие к наименьшему углу равны 18см и 24см. Они пропорциональны соответствующим сторонам треугольника KLM с коэффициентом 6. Значит третья сторона треугольника АВС равна 2*6=12. Периметр треугольника АВС равна 12+18+24=54см. ответ: периметр треугольника АВС равен 54см.
площадь сечения
S₁ = 1/2*1*1*sin(60°) = √3/4
Площадь боковой поверхности конуса
S₂ = π·r·l
где r - радиус основания, l - образующая, у нас l=1, радиус будем искать.
Площадь треугольника ОРТ через основание и высоту
S₁ = 1/2*РТ*ОВ = 1/2*1*ОВ = √3/4
ОВ = √3/2
Теперь с треугольником ОВН
ОН/ОВ = sin(60°)
ОН = OВ*sin(60°) = √3/2*√3/2 = 3/4
Теперь с треугольником ОТН
ТН² + ОН² = ОТ²
ТН² + (3/4)² = 1²
ТН² = 7/16
ТН = √7/4
---
S₂ = π·√7/4·1 = π√7/4
И требуемое отношение
S₁/S₂ = √3/4/(π√7/4) = √3/(π√7)