Основи трапеції дорівнюють 18 і 12 см. через більшу основу проведено площину на відстані 5 сантиметрів від меншої основи. знайти у сантиметрах відстань від точки перетину діагоналей трапеції до цієї площини.
Треугольники, образованные точкой пересечения диагоналей и основаниями трапеции подобны, у них вертикальные углы равны и накрест лежащие углы при основаниях одинаковы. a/b = 12/18 a = 2/3*b теперь вид сбоку треугольники опять подобны, по трём углам - один угол общий, один угол прямой и третий такой же просто исходя из того, что он равен 180-90-z, где z - угол между плоскостью трапеции и проведённой через большее основание второй плоскостью. из подобия треугольников x/b = 5/(a+b) x(a+b)=5b x(2/3*b+b) = 5b x*5/3 = 5 x = 3 см
Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
a/b = 12/18
a = 2/3*b
теперь вид сбоку
треугольники опять подобны, по трём углам - один угол общий, один угол прямой и третий такой же просто исходя из того, что он равен 180-90-z, где z - угол между плоскостью трапеции и проведённой через большее основание второй плоскостью.
из подобия треугольников
x/b = 5/(a+b)
x(a+b)=5b
x(2/3*b+b) = 5b
x*5/3 = 5
x = 3 см