М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sparksfiyfdgghffgg
sparksfiyfdgghffgg
13.05.2023 07:53 •  Геометрия

Высота конуса 8мм, образующая боковой поверхности 10 мм. найдите: 1. радиус вписанного шара; 2. длинну линии касания

👇
Ответ:
andrey2085
andrey2085
13.05.2023
Дано: в конус вписан шар;    h = OC = 8 мм;    AC = 10 мм
Найти: r - ?;   длину линии касания

Для решения нужно провести сечение конуса по диаметру основания, в сечении будет равнобедренный ΔBCA

ΔAOC - прямоугольный. По теореме Пифагора
OA² = AC² - h² = 100 - 64 = 36 = 6²
OA = 6 мм 

ΔBCA равнобедренный  ⇒     BA = 2·OA= 2·6 = 12  мм
Площадь треугольника
S = \frac{BA*h}{2} = \frac{12*8}{2} = 48
Площадь треугольника через радиус вписанной окружности
S = pr = \frac{12+10+10}{2} *r = 48
16r = 48    ⇒    r = 3 мм

Длина касания - это длина окружности
             с центром в точке P и радиусом KP
ΔDKC - прямоугольный, т.к. DK - радиус в точку касания K

ΔBOC подобен ΔCKD по двум углам, прямому и общему ∠KCD

\frac{OB}{KD} = \frac{OC}{KC} \\ \\ KC = \frac{KD*OC}{OB} = \frac{3*8}{6} =4

ΔBOC подобен ΔKPC по двум углам, прямому и общему ∠KCD

\frac{BC}{KC} = \frac{BO}{KP} \\ \\ KP = \frac{KC*BO}{BC} = \frac{4*6}{10} =2,4

Длина окружности с центром в точке Р
L = 2π·KP = 2·π·2,4 = 4,8π

ответ: радиус вписанного шара  3 мм;   
            длина линии касания 4,8π мм
Высота конуса 8мм, образующая боковой поверхности 10 мм. найдите: 1. радиус вписанного шара; 2. длин
4,4(35 оценок)
Открыть все ответы
Ответ:
nermakov
nermakov
13.05.2023
Высота равнобедренного треугольника, проведенного к основанию 6, делит основание пополам. ( cм. рисунок в приложении)
Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник) 
S=6·4/2=12 кв. ед
Вершина пирамиды проектируется в центр описанной окружности
(см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая  и острому углу)
r=S/p=12/(5+5+6)/2=24/16=3/2=1,5
H=r·tg60°=1,5·√3=3√3/2 
4,6(32 оценок)
Ответ:
Klimg
Klimg
13.05.2023
Вообще, это надо рисовать, иначе нифига непонятно (ну и про учебник присоединюсь к Эго Фризу) 
Итак, что мы имеем: треугольник АВС, где угол А=90 градусов, и высота АD делит его на два прямоугольных треугольника. 
Начнем с того, что попроще: треугольник ADB (угол D=90 градусов) , катет AD=12, гипотенуза АВ=20, по теореме Пифагора 20^2=12^2+DB^2 
Таким образом, сторона DB=16 
Теперь рассмотрим второй треугольник, получившийся при делении большого треугольника высотой: 
CDA, где угол D =90 градусов. 
Катет AD=12, катет DC=X, гипотенуза AC=Y 
По все той же теореме Пифагора получаем: 
Y^2=12^2+X^2 
Теперь рассмотрим исходный треугольник АВС 
Катет АВ=20, катет АС=Y (смотри выше) , гипотенуза СВ=X+16 
По теореме Пифагора получаем: 
20^2+Y^2=(X+16)^2 => Y^2=X^2+32X+256-400 => Y^2=X^2+32X-144 
подставляем в уравнение Y^2=12^2+X^2 выраженное значение Y, получаем: 
X^2+32X-144=12^2+X^2 
32X=288 
X=9 

Таким образом, гипотенуза ВС=16+9=25 
Катет АС=15 
Косинус угла С равен отношению прилежащего катета к гипотенузе, т. е. cos C= AC/CB=15/25=3/5
4,8(69 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ