Для начала, надо найти высоты этих треуголников, высота ABC будет равна:
Для начала надо найти стороны прямоугольного треугольник образованного сторонами AB и AC и высотой этого треугольника: AB будет равна 9(половина AC) делить на кореньиз3 делить на 2 ((3^1/2)/2), получим 6корнейиз3-х (6*3^1/2)
Высота трегольника ADC будет равна кореньиз3*сторона теугольника/2 (треугольник ADC - правильный), следовательно высота ADC будет равна 9*кореньиз3 ( 9*3^1/2)
Далее, зная стороный треугольника, образованного отрезком BD и двумя высотами и используя теорему косинусов, сможем найти угол между плоскостями треугольников:
189=36*3+81*3-2*6*9*3*cosA, следовательно косинус угла будет равен 1/2 (0.5), а угол, косинус которого равен 1/2, угол в 60 градусов.
ответ: 60 градусов
180 см2
Объяснение:
Пусть ВС-малое основание, AD-большое основание р/б трапеции. Вписанная окружность касается сторон АВ, ВС, СD, AD в точках M,N,P,Q соответственно. Т.к. трапеция р.бокая, то AB=CD. BM=BN=CN=CP=3-по свойству касательных к окружности.
AM=AQ=DQ=DP=12-по свойству касательных к окружности. Отсюда ВС=3+3=6, AD=12+12=24
Проведем высоты ВВ1 и СС1 к AD. BC=B1C1=6. AB1=(AD-B1C1)/2=9
Тр-к ABB1-прямоугольный. по. Пифагора: BB1=sqrt(AB^2 - AB1^2)=sqrt(225-81)=12
S=1/2*(BC+AD)*BB1=1/2*(6+24)*12=180 см2