Площадь по формуле Герона р=(8+15+17)/2=40/2=20 см S=√(20*(20-8)*(20-15)*(20-17))=√(20*12*5*3)=4√(5*3*5*3)=(4*5*3)=60 см2 и из формулы площади S=1/2*a*h следует, что к самой короткой стороне строится самая большая высота. h=2*S/a = 120/8=15 см
1. Противоположные углы ромба равны, следовательно угол ABD = углу BCD, и угол ABC = углу ADC, тогда пусть меньший угол (ABC, ADC) будет х, а больший угол (ABD, BCD) будет у;
2. Сумма большего и меньшего угла ромба равняется 180°, следовательно х+у = 180, и по условию у-х=60°, составим систему:
у+х=180° у-х=60° , сложим вместе два уравнение, тогда: у+х+у-х=240°, получается: 2у = 240°, и у = 120°, тогда х = 180-120=60°;
3. По свойствам диагоналей ромба следует, что они (диагонали) делятся в точке пересечения пополам => AC = 16см, тогда AO=OC=AC/2 = 8см;
4. По свойствам диагоналей ромба следует, что они являются биссектрисой углов ромба => угол OAB = угол BAD/2 = 60°, угол ABO = угол ABC/2 = 30°;
5. Рассмотрим треугольник АВО - прямоугольный, так как угол AOB = 90° (по свойствам диагоналей ромба они расположены перпендикулярно относительно друг друга), угол BAO = 60°, угол ABO = 30°, по теореме об угле в 30° в прямоугольном треугольнике => AB = 2AO = 16см;
3) к этому заданию рисунок не нужен решение: раз трапеция описана вокруг круга, то сумма противоположных сторона равна, значит сумма боковых сторон равна сумме оснований = 6 + 8 = 14 см средняя линия равна полусумме оснований = 14/2 = 7 см
2) <BOC = <AOD (вертикальные) BC ll AD (основания трапеции) <BCA = <CAD (накрест лежащие) <CBO = <ODA (накрест лежащие)==> ==> тр.ВОС подобен тр.AOD (по трем углам) (рис.1)
5) <KAD = <DAK (накрест лежащие) <DAK = <BAK (АК - биссектриса) ==> <BAK = <BKA==> ==> тр. АВК - равнобедреный и тогда АВ = ВК = 4 см ВС = ВК + КС = 4 + 6 = 10 см S abcd = AB * BC = 4 * 10 = 40 см^2(рис.2)
р=(8+15+17)/2=40/2=20 см
S=√(20*(20-8)*(20-15)*(20-17))=√(20*12*5*3)=4√(5*3*5*3)=(4*5*3)=60 см2
и из формулы площади
S=1/2*a*h
следует, что к самой короткой стороне строится самая большая высота.
h=2*S/a = 120/8=15 см