У прямоугольной трапеции 2 прямых угла, 1 тупой и 1 острый. Высота из тупого угла разбивает трапецию на прямоугольник и прямоугольный треугольник. Одна из сторон прямоугольника равна длине меньшего основания и равна 5. Один из катетов прямоугольного треугольника равен 22-5=17, а так как острый угол этого треугольника - 45 градусов, второй катет также равен 17. Второй катет является высотой и второй стороной прямоугольника. Таким образом, площадь прямоугольника равна 5*17=85, а площадь треугольника 17*17/2=289/2=144.5. Значит, суммарная площадь равна 144.5+85=229.5
Дано:
1. AB = BC
2. Угол №1 = Углу №2
Доказать:
Доказательство: BC || AD
ABC – равнобедренный. Тогда углы при основании равны, значит, .
(по условию).
Тогда Угол 2 = Углу 3 . А эти углы – накрест лежащие при прямых AD и BC и секущей AC. Следовательно, , что и требовалось доказать.