если сторона призмы a, то площадь основания S = a^2*sqrt(3)/4 (равносторонний треугольник), а площадь боковой поверхности 3*a^2 (три одинаковых квадрата), и условие выглядит так:
a^2*(3+2*sqrt(3)/4) = 8+16*sqrt(3);
S = a^2*sqrt(3)/4;
Далим второе равенство на первое, sqtr(3) = g
S = 2*(1+2*g)*g/(3+g/2) = 2*(g+6)/(g/2+3) = 4
Странно, у меня другой ответ :((( хотя решали одинаково. Наверно опять где то ошибся.
Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см
Ознаки рівності прямокутних трикутників:
Якщо гіпотенуза й катет одного прямокутного трикутника відповідно рівні гіпотенузі й катету іншого прямокутного трикутника, то такі трикутники рівні.
Якщо катети одного прямокутного трикутника відповідно рівні катетам іншого прямокутного трикутника, то такі трикутники рівні.
Якщо катет і протилежний до нього гострий кут одного прямокутного трикутника відповідно рівні катету і протилежному до нього гострому куту іншого прямокутного трикутника, то такі трикутники рівні.
Объяснение:
a^2sqrt(3)/4- площадь основания (а-ребро)
3a^2+a^2sqrt(3)/2=8+16sqrt(3)
a^2=(8+16sqrt(3))/(sqrt(3)/2+3)
S=8*(1+2√3)*√3/4*1/(3+√3/2)=16*(1+2√3)*√3/(4*(1+2√3)*√3)=4