Зная, что каждый угол выпуклого многоугольника равен 150 градусов, можно записать сумму его углов так: 150*n, где n- число углов (и сторон). Также можно использовать формулу суммы углов выпуклого n-угольника (n-2)*180. Приравняем эти выражения, раз речь идет об одном и том же: 150*n = (n-2)*180 150n=180n-360 30n=360 n=12 Итак, число сторон многоугольника, каждый угол которого равен 150 градусов, равно 12. У другого многоугольника число сторон в 2 раза меньше, т.е. 12:2=6. Используем формулу (n-2)*180: (6-2)*180=720°
Параллелограмм — четырехугольник, у которого противоположные стороны равны. Допустим, что наш параллелограмм это АВСД. У него АВ=СД, а ВС=АД. Периметр равен сумме всех сторон, значит АВ+СД+ВС+АД=256 2АВ+2ВС=256.
По условию задачи АВ/ВС=0,27/0,13, и исходя из этой пропорции АВ=0,27ВС/0,13. Подставим это значение АВ в предыдущее уравнение: 2АВ+2ВС=256. 2*0,27ВС/0,13+2ВС=256. 0,54ВС/0,13+2ВС=256 ВС*54/13+2*13ВС/13=256 54ВС/13+26ВС/13=256 80ВС/13=256 ВС*80/13=256 ВС=256 / 80/13 ВС=256 * 13/80 ВС=41,6 см Значит ВС=АД=41,6 см
Теперь найдем размеры других сторон параллелограмма: АВ=0,27ВС/0,13 = 0,27*41,6/0,13=86,4 см Значит АВ=СД=86,4 см
х:3 = -2: 12
х = 3 · (-2) : 12 = -0,5
ответ: х = -0,5