Треугольник АВС равнобедренный , а значит его медиана является и биссектрисой , а как известно биссектриса делит угол по полам - угол С= 80 градусов , и мы его делим по полам значит получаем 40 градусов.также в равнобедренном треугольники углы при основании равны значит угол В = углу А = 50 градусов. Теперь мы может узнать угол СМВ - он равен 180-40-50=90 градусов.
Биссектрисы ВМ и СМ, пересекаясь с точкой М, принадлежащей стороне АD, образуют треугольники со стороной АD и боковыми сторонами. Образованные треугольники равнобедренные. Рассмотрим треугольник АВМ. Углы АВМ и АМВ равны, т.к. угол АМВ равен углу МВС как внутренний накрест лежащий, а углы АВМ и МВС равны по условию (ВМ - биссектриса). Следовательно треугольник АВМ равнобедренный, и АВ=АМ. Аналогично доказываем, что СD=MD. Коль скоро АВ=CD как стороны параллелограмма, то АМ=МD, т.е. точка М есть середина АD.
Биссектрисы ВМ и СМ, пересекаясь с точкой М, принадлежащей стороне АD, образуют треугольники со стороной АD и боковыми сторонами. Образованные треугольники равнобедренные. Рассмотрим треугольник АВМ. Углы АВМ и АМВ равны, т.к. угол АМВ равен углу МВС как внутренний накрест лежащий, а углы АВМ и МВС равны по условию (ВМ - биссектриса). Следовательно треугольник АВМ равнобедренный, и АВ=АМ. Аналогично доказываем, что СD=MD. Коль скоро АВ=CD как стороны параллелограмма, то АМ=МD, т.е. точка М есть середина АD.