Ну вы хотя бы градусы маленькой буквой о обозначали, а не 0. 1) Смежные углы в сумме дают 180°. Один 28°, другой 152° 2) При пересечении двух прямых получаются 2 вертикальных угла (равны друг другу) и два смежных (в сумме 180°). Углы равны 70°, 70°, 110°, 110°. 3) Если внешний угол равен 40°, то внутренний 180° - 40° = 140°. Второй угол равен 30°, а третий 180° - 140° - 30° = 10° 4) В равнобедренном треугольнике медиана - она же биссектриса и высота. Поэтому боковые стороны AB=BC, сторона BO общая, углы ABO=CBO. По 2 признаку равенства треугольников (2 стороны и угол) эти треугольники равны. 5) Углы прямоугольного треугольника A = 90°, C = 15°, B = 75°. Угол В делят на CBD = 15° и ABD = 60°. Значит, угол ADB = 90° - 60° = 30°. Катет против угла 30° равен половине гипотенузы. а) Значит, гипотенуза BD = AB*2 = 3*2 = 6 см. б) Треугольник BDC - равнобедренный с углами B = C = 15°, D = 150°. Стороны BD = DC = 6 см. По правилу треугольника, сторона BC должна быть меньше суммы двух других сторон. BC < BD + DC = 6 + 6 = 12 см.
Рисунок самостоятельно начертишь. 1) Рассм треуг АВД, в нем уг В =90*, уг Д=30*, след уг А=60* ( по теореме о сумме углов в треугольнике) 2) В трап АВСД уг Д=60* ( по условию ВД - биссектриса) 3) трап АВСД - р/б так как в ней углы при основании АД равны по 60* 4) Уг СВД=уг ВДА=30* (как накрестлеж при BC||АД и сек ВД), след треуг ВСД - р/б (по признаку) с осн ВД. 5) из 3,4 следует, что АВ=ВС=СД 6) Р(АВСД)= 3*АВ+АД=60 (см) 7) Рассм треуг АВД ( уг В=90* по усл, уг Д=30* по усл). АД=2*АВ (по свойству катета, леж против угла в 30*) 8) на основании пп 6,7) получаем: 3*АВ + 2*АВ = 60 ; 5*АВ=60 ; АВ=12 (см)
Угол А=40, значит, угол В=40 градусов.
Угол С=180-(40+40)=100 градусов.