1) если в основании прямоугольник со сторонами а и в, площадь боковой поверхности равна 2(a + b) * c = 2 *10 * 3 = 60 /см²/; площадь полной поверхности = S(бок) + 2S(осн) = 60 + 2 *6 * 4 = 60 + 48 = 108/ см²/
2) Если в основании прямоугольник со сторонами а и с, то площадь боковой пов. равна 2(a + с) * в=2*9*4=72/см²/ ; площадь полной поверхности = S(бок) + 2S(осн) 72+2*6*3=108/см²/,
3) если в основании прямоугольник со сторонами в и с, площадь боковой поверхности равна 2(в + с) * а = 2 * 7 * 6= 84/см²/; площадь полной поверхности = S(бок) + 2S(осн) = 84 + 2 *4 *3 = 84 + 24 = 108/ см²/
Конечно, площадь полной поверхности не менялась оттого, что мы меняли основания.
ВМ=МС=а
AN=ND=b (это обозничили мы так)
треугольники APN и MPB подобны с коэффициентом b/a,и высоты тоже
треуг. NQD и CQM подобны с тем же коэфф b/a и высоты тоже.
но если у треуг. APN и NQD AN=ND, то и высоты равны. Т.е. точки P и Q находятся на одинаковом расстоянии от AD
что и требовалось доказать.
если по поводу высот , что они равны , непонятка, то это следует из того, что отношения высот малого и большого треуг. равно одному и тому же коэффициенту, а сумма этих высот постоянна (высота трапеции)