Так противоположные углы параллелограмма равны (разность противоположных углов =0), то разность двух смежных углов равна 70 градусов.
Пусть дан параллелограмм ABCD и
угол A-угол В=70 градусов (1)
По свойству смежных углов параллелограмма (их сумма равна 180 градусов)
угол А+угол В=180 градусов (2)
Сложив равенства (1) и (2), получим
2*угол А=70 градусов +180 градусов
2*угол А=250 градусов
угол А=250 градусов:2;
угол А=125 градусов
угол В=угол А-70 градусов=125 градусов -70 градусов=55 градусов
ответ: 55 градусов, 125 градусов
Найдем S(AOB):
S(AOD):S(BOC) =16:9=k2
k=4/3
k=4/3=AO/OC
S(AOB)=0,5•BL•AO
S(BOC)=0,5•BL•OC
S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3
S(AOB)/S(BOC) =4/3
S(AOB)=4/3•S(BOC)=4/3•9=12
S(ABCD)=12+12+16+9=49
Объяснение:
Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.
S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)
S(AOD)≠S(BOC)
Следовательно, у этих треугольников AD и BC основания трапеции.
∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а
стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.
a=Р/3=12√3/3=4√3(см).
Найдём площадь треугольника: S=а²√3/4=48√3/4=12√3(см²).
Найдём радиус вписанной окружности:
r=2S/Р=48√3/12√3=4(см).
Найдём длину окружности:
l=2Пr=2*П*4=8П(см).
ответ: 8П см.