Пусть плоскости α и β параллельны, прямая а перпендикулярна плоскости α. Докажем, что эта прямая перпендикулярна и плоскости β.
В плоскости α проведем две пересекающиеся прямые b и с.
Так как прямая а перпендикулярна плоскости α, то она перпендикулярна каждой из этих прямых.
В плоскости β проведем прямые d║b и е║с.
Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
Значит, а ⊥ d и а ⊥ е.
Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна плоскости, ⇒
а ⊥ β.
1) Измерения можно сократить на 2 записать:
а = 8х, в = 9х и с = 12х.
Диагональ D равна корню из квадратов измерений.
D = √((8х)²+(9х)²+(12х)²) = √(64x²+81x²+144x²) = √(289x²) = 17x.
Отсюда коэффициент кратности х = 136/17 = 8.
Получаем измерения:
а = 64, в = 72 и с = 96.
2) Синус угла между диагональю параллелепипеда и основанием равен отношению высоты к диагонали.
Если считать, что высота - это измерение с, то синус угла α равен:
sinα c/D = 96/136 = 12/17 ≈ 0,705882.
А сам угол α = arc sin(12/17) = 0,783668 радиан или 44,90087°.