М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ппам
ппам
04.05.2021 08:49 •  Геометрия

На поверхности шара даны три точки. прямолинейное расстояние между ними равно 6 см, 8 см, 10 см. расстояние от центра шара до плоскости, проходящей через эти точки равно 12 см. найдите объем.

👇
Ответ:
MAXguychenya
MAXguychenya
04.05.2021
6-8-10 - это прямоугольный треугольник
6² + 8² = 36 + 64 = 100 = 10²
И радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы
R = 10/2 = 5 см
Радиус шара Z найдём по теореме Пифагора
Z² = R² + h²
Z² = 5² + 12²
Z² = 25 + 144 = 169
Z = √169 = 13 см
4,4(35 оценок)
Открыть все ответы
Ответ:
antipovakamila
antipovakamila
04.05.2021

Объяснение:

Проведём высоту к основанию. Основание при этом будет поделено на два равных отрезка, т.к. высота, проведённая к основанию равнобедренного треугольника, является медианой и биссектрисой, отрезки основания равны по 10 см. Получаем прямоугольный треугольник с катетом 10 и гипотенузой 26 (боковая сторона), по теореме Пифагора находим высоту: 26²-10²=x²

676-100=x²

x²=576

x=24 см

Площадь треугольника рассчитывается по формуле ½*высота*основание, к которому она проведена. Подставляем: ½*24*20=240 см²

ответ: высота равна 24 см, площадь — 240 см²

4,5(38 оценок)
Ответ:
zska25
zska25
04.05.2021

№1. Сторона правильной четырехугольной пирамиды равна а, а диагональное сечение - равносторонний треугольник. Найти объем пирамиды.

Пирамида QABCD, QO -  высота,  АQC- диагональное сечение, АВ=а.

V=S•h:3

S=a²

h=AC√3/2  

AC=a:sin45°=a√2

h=a√6/2

V=a³√6/6

№2. Высота правильной четырехугольной пирамиды равна 12 см, а апофема – 15 см. Вычислить площадь боковой поверхности пирамиды.  

      Апофема – высота боковой грани правильной пирамиды, следовательно, QH⊥CD. По т. о 3-х перпендикулярах ОН⊥CD.  

По т.Пифагора ОН=9 ( можно обойтись без вычислений, т.к. ∆ QOH- египетский, где отношение катет:гипотенуза=4:5).

ОН - половина АD, ⇒АD=2OH=18 (см)

Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания.  

S=15•18•4:2=540 см².

————————

№3. Условие неполное.  

Объем  V  правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC), на высоту h (OS)

Формула площади основания S=a²√3/2. Зная высоту, несложно вычислить объём данной пирамиды.  

———————

№4.

Сторона основания правильной треугольной пирамиды равна 8 см, а боковая грань наклонена к плоскости основания под углом 30°. Найти площадь полной поверхности пирамиды.  

S(бок)=3•MH•AB:2=3•8/3•8:2=32

————————

№5  

Основание пирамиды – треугольник со сторонами 13 см, 14 см, 15 см. Найти площадь сечения, которое проходит параллельно плоскости основания и делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды.  

————————

№6.

Найти объём правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а диагональное сечение является равносторонним треугольником.  

———————

Решения задач 4,5,6  даны в приложениях.

Объяснение:

4,5(15 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ