а) перпендикуляр проведенный из любой точки одной из двух взаимно перпендикулярных плоскостей к прямой их пересечения, есть перпендикуляр к другой плоскости.
Верно.
б) Через данную прямую, не перпендикулярную данной плоскости, можно провести бесконечное число плоскостей, перпендикулярных данной.
Неверно. Можно провести единственную плоскость, перпендикулярную данной, так как
в) Через данную прямую, перпендикулярную данной плоскости, можно провести бесконечное число плоскостей, перпендикулярных данной.
Верно.
г) Плоскость и не лежащая в ней прямая, перпендикулярные одной и той же плоскости, параллельны между собой
1 Острый угол (от 0° до 90°, не включая граничные значения). 2 Если две фигуры совмещаются наложение, то они называются равными. 3 Два угла называются смежными, если у них одна сторона общая, а другие стороны являются дополнительными лучами. сумма смежных углов равна 180°. 4 Их сумма равна 180 градусам, у них общая вершина, одна сторона общая, другие лежат на одной прямой не совпадая. 5 53( градусов ) 6 Биссектриса параллелограмма обладает следующими свойствами:биссектриса отсекает от параллелограмма равнобедренный треугольник (по свойству накрест лежащие углы равны, а так как биссектриса делит угол на две равные части, то все углы, касающиеся биссектрисы, равны);биссектрисы смежных углов при пересечении образуют прямой угол (по обычному свойству биссектрис);биссектрисы параллелограмма, пересекаясь, образуют прямоугольник (следует из предыдущего свойства о том, что биссектрисы смежных углов пересекаются под прямым углом);если диагональ угла в параллелограмме является при этом биссектрисой, то этот параллелограмм называется ромбом (по признакам ромба).7 Вертикальные углы — пары углов с общей вершиной, образуемые при пересечении двух прямых так, что стороны одного угла являются продолжением сторон другого. 8 Вертикальные углы — пара углов, у которых вершина общая, а стороны одного угла составляют продолжение сторон другого угла. так 9 Две прямые, пересекающиеся под прямым углом, . Перпендикулярность прямых (или их отрезков) обозначают знаком перпендикулярности «⊥».
а) перпендикуляр проведенный из любой точки одной из двух взаимно перпендикулярных плоскостей к прямой их пересечения, есть перпендикуляр к другой плоскости.
Верно.
б) Через данную прямую, не перпендикулярную данной плоскости, можно провести бесконечное число плоскостей, перпендикулярных данной.
Неверно. Можно провести единственную плоскость, перпендикулярную данной, так как
в) Через данную прямую, перпендикулярную данной плоскости, можно провести бесконечное число плоскостей, перпендикулярных данной.
Верно.
г) Плоскость и не лежащая в ней прямая, перпендикулярные одной и той же плоскости, параллельны между собой
Верно.