Плоскость альфа и бета пересекаются по прямой с. прямая а лежит в плоскости альфа и пересекает по плоскость бета. пересекают ли прямые а и с ? почему ? нужен дано и решение
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
1. ABCD - сечение цилиндра, проведенное параллельно оси. BD = 6 см, ∠BDA = 45°. ΔBDA: ∠BAD = 90°, ∠BDA = 45°, ⇒ ∠DBA = 45°, ⇒ BA = AD = x x² + x² = 6² 2x² = 36 x = √18 = 3√2 H = AB = 3√2 см - высота цилиндра.
Дуга AD 60°, ⇒ ∠AOD = 60° (центральный) ΔAOD: AO = OD = R, ∠AOD = 60°, ⇒ треугольник равносторонний. R = AD = 3√2 см
Sбок = 2πRH = 2π· 3√2· 3√2 = 36π см²
2. ВО = 6 см - высота конуса, ОС = 2√3 дм - радиус основания. ΔВОС: ∠ВОС = 90°, по теореме Пифагора ВС = √(ВО² + ОС²) = √(0,36 + 12) = √12,36 дм
Сечение ΔАВС - равносторонний, так как АВ = ВС как образующие, ∠АВС = 60°. Sabc = a²√3/4, где а - сторона равностороннего треугольника. Sabc = 12,36√3/4 = 3,09√3 дм²