Рассмотрим прямоугольный треугольник MNP. NH - высота, проведённая к гипотенузе, следовательно, она является средним геометрическим для отрезков MH и HP.
Следовательно :
Тогда площадь прямоугольного треугольника MNP равна половине произведения высоты и стороны, к которой проведена эта высота.
MP - диагональ. Диагональ параллелограмма делит параллелограмм на два равных (в частности и на равновеликих) треугольника. Следовательно, площадь прямоугольника MNPK равна произведению площади треугольника MNP на два.
S(MNPK) = 39*2 = 78.
ответ: 78 (ед^2).
1) Сумма внешнего и внутреннего угла многоугольника равна 180° ⇒ следовательно внутренний угол многоугольника равен 180° - 20° = 160°
Величина внутреннего угла правильного многоугольника зависит от количества его сторон n и выражается формулой:
Найдем при каком n угол будет равен 160°:
Т.е. угол в 160° будет у правильного 18-угольника
2) Радиус окружности описанной около правильного треугольника R и сторона a треугольника связаны соотношением:
Подставим заданное значение стороны:
Следовательно, радиус окружности, описанной около этого треугольника равен 6 см
3) Градусная мера всей окружности равна 360°, а радианная мера 2π, следовательно градусная мера дуги равна:
°
а радианная:
Длину дуги найдем как 8/15 от длины окружности:
см
Пусть высота СК делит гипотенузу АВ в точке К, тогда ВК=х, АК=х+5
составляем уравнение
Из треугольника АСК
АС=√(36+(x+5)^2)
Из треугольника BСК
CB=√(36+x^2)
Тогда для треугольника АВС
(x+x+5)^2= 36+(x+5)^2 +36+x^2
решаем:
4x^2+20x+25=36+x^2+10x+25+36+x^2
2x^2+10x-72=0
x^2+5x-36=0
x=4
тогда
АС=√(36+(x+5)^2) = √(36+(4+5)^2) =√117=3√13
CB=√(36+x^2)=√(36+4^2)=√52=2√13
Площади треугольников:
АСК: S2= (1/2)*6*9
BСК: S1 =(1/2)*6*4
S1/S2 = 4/9
готово*