Призма - правильная четырехугольная. В основании - квадрат. Диагональ наклонена к плоскости основания под углом 45°. Значит, диагональ квадрата-основания и высота призмы - катеты равнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы. Длина этой гипотенузы дана в условии - 4 см Пусть х - катеты этого треугольника 4=х√2 х=4:√2=4√2:(√2*√2)=2√2 Диагональ основания квадрата =2√2 Высота призмы =2√2 Основание цилиндра - круг, ограниченный вписанной в квадрат окружностью. Радиус этой окружности равен половине стороны квадрата - основания призмы. Найдем эту сторону из формулы диагонали квадрата: d=а√2 Мы нашли d=2√2, значит сторона квадрата а=2 r= 2:2=1 Имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения r =1 Площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра. S =2πr*h= 2π*2√2 см²=4π√2 см²
1) прямоугольник - это параллелограмм ,у которого все углы прямые а)в прямоугольнике диагонали равны прямоугольник имеет все свойства параллелограмма в)каждая диагональ разбивает прямоуг. на 2 равных треуг. г) прямоуг . имеет 2 оси симметрии ромб -это параллелограмм с равными сторонами (все стороны равны) а) диагонали ромба взаимно перпендикулярны и делят углы ромба пополам б)каждая диагональ ромба есть его ось симметрии квадрат -это параллелограмм ,у которого все стороны равны и все углы прямые квадрату принадлежат все свойства параллелограмма, ромба и прямоугольника
3430 * (6/7)³ = 2160 мл