1 Нет, не существует.
Объяснение:
Т.к. сумма углов выпуклого четырёхугольника равна 360°
Из этого следует:
130° + 55° + 45° + 125° = 345°
Если сумма углов меньше или больше 360° ⇒ Это не четырёхугольник
Значит нет такого четырёхугольника
б)15
Объяснение:
(n-2)*180=2340
n=15
2. а)Нет . Каждая диагональ делиться на два равных треугольника
б)Нет. Противолежащие стороны равно
в)Да. Противолежащие < равно
г)Да. Диагонали точкой пересечения делится на попалам AC=ВD
3.Решение:
Средняя линия треугольника равна половине основания треугольника, следовательно основание треугольника равно: 7*2=14 (м) , т.к. меньшее основание образовавшейся трапеции, есть средняя линия треугольника, равная 7м
Зная что средняя линия треугольника делит боковые стороны трегольника пополам, боковые стороны треугольники равны:
- первая 5*2=10(м)
-вторая 6*2=12(м)
Отсюда:
периметр треугольника равен: 14+10+12=36(м)
4.высота , проведенная к основанию является медианой ( треугольник равнобедренный ) ⇒ медиана , проведенная к боковой стороне делит ее в отношении 2 : 1 ⇒ меньший отрезок высоты равен 4 , а вся высота 12
Т.к. по условию AC⊥CDE, то AH - наклонная, а AC - перпендикуляр (к плоскости CDE). И AH⊥DE (по построению), тогда по теореме обратной теореме "о трёх перпендикулярах", получаем, что DE⊥CH.
Таким образом CH - это высота прямоугольного равнобедренного треугольника CDE. Найдем CH. Для этого найдем DE по т. Пифагора:
DE² = CE² + CD² = (12√2)² + (12√2)² = 2*12² + 2*12² = 4*12²,
DE = √(4*12²) = 2*12.
Т.к. треугольник CDE - равнобедренный, то его высота CH является и медианой. Поэтому DH = EH = DE/2 = 2*12/2 = 12.
По т. Пифагора для ΔCDH.
CH² = CD² - DH² = (12√2)² - 12² = 2*12² - 12² = 12²,
CH = √(12²) = 12.
Т.к. AC⊥пл.CDE, то AC⊥CH, и ΔACH прямоугольный, ∠ACH = 90°.
По т. Пифагора для ΔACH:
AH² = CH² + AC² = 12² + 35² = 144 + 1225 = 1369,
AH = √(1369) = 37.
ответ. 37 дм.