Биссектриса тупого угла параллелограмма делит сторону в отношении 2: 5, считая от вершины острого угла. найдите большую сторону, если его периметр равен 54
Можно решить несколько проще. Половина периметра параллелограмма - это длина двух сторон, равная 54/2 = 27. Если АД = АЕ + ЕД = 2х+5х = 7х, то АВ = 27 - 7х. По свойству равнобедренного треугольника (АВ = АЕ) или 2х = 27 - 7х. 9х = 27, х = 27/9 = 3. Отсюда АД = 7х = 7*3 = 21.
Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
В прямоугольном треугольнике катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Значит, катет равен 18:2 = 9. Если один острый угол прямоугольного треугольника равен 45, то второй тоже равен 45, т.к. сумма острых углов в прямоугольном треугольнике равна 90 градусов.Треугольник равнобедренный. Если один катет равен 8, то и второй равен 8.Если сумма катетов 28 и они равны, то каждый катет равен 28:2 = 14.В прямоугольном равнобедренном треугольнике медиана вершины угла равна биссектрисе и высоте. А медиана из прямого угла в прямоугольном треугольнике равна половине гипотенузы.Значит х+2х=21. Отсюда х=7 2х=14.Гипотенуза равна 14, высота равна 7.
Р=54
Найти ВС=АД.
Биссектриса тупого угла отсекает от параллелограмма равнобедренный треугольник. Рассмотрим треугольник АВЕ - равнобедренный. АВ=АЕ=СД=2х.
АД=ВС=7х
Имеем уравнение:
2х+2х+7х+7х=54
18х=54
х=3
АД=ВС=7*3=21 (ед.)
ответ: 21 ед.