М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
motidzukiakane
motidzukiakane
06.09.2020 05:10 •  Геометрия

1из катетов прямоугольного треугольника равен 4 см,а другой 5 см.найти гипотенузу

👇
Ответ:
dogs91
dogs91
06.09.2020
A и b-катеты; c-гипотенуза
c^2=a^2+b^2
c^2=16+25
c^2=41
c= √41
4,4(38 оценок)
Открыть все ответы
Ответ:
PokerFresh
PokerFresh
06.09.2020
См. рисунок!

Дано: ABCD (AD || BC, AB ⊥ AD) - прямоугольная трапеция, К, М, N, Р - точки касания вписанной окружности к соответствующим сторонам трапеции. АР = 2 см, РD = 4 см. О - центр вписанной окружности.

Найти: Р (ABCD) - ?

По свойству касательных, проведенных из одной точки, получим: 
АР = АК = 2 см, ND = PD = 4 см.

ОР ⊥ АD, поэтому АКОР - квадрат.

ОР = ОМ, поэтому КВМО = АКРО, отсюда ВК = ВМ = АР = 2 см.

Пусть х см - СМ. Тогда по свойству касательных, проведенных из одной точки, получим: СМ = CN = х см.

Построим высоту CL трапеции и получим: LD = PD - PL = (4 - x) см.

Рассмотрим прямоугольный треугольник CLD (∠L = 90°): CD = ND + CN = (4 + х) см, CL = 4 см.

По теореме Пифагора имеем: 
CD² - LD² = CL²; 
(4 + x)² - (4 - x)² = 4²;
4² + 8x + x² - 4² + 8x - x² = 16;
16x = 16
x = 1

Далее имеем: CD = 4 + 1 = 5 (см), ВС = 2 + 1 = 3 (см), АВ = 2 + 2 = 4 (см), АD = 4 + 2 = 6 (см).

P (ABCD) = CD + AD + AB + BC = 5 + 6 + 4 + 3 = 18 (см) 

ответ: 18 см

Богом точка касания окружности, вписанной в прямоугольную трапецию, делит ее большее основание на от
4,6(51 оценок)
Ответ:
hoper123
hoper123
06.09.2020

Построение:

На прямой "а" возьмем произвольную точку А и из нее как из центра проведем окружность произвольного радиуса. Обозначим точку пересечения этой окружности с прямой "а" через "b" и "с" и из них, как из центров проведем окружности радиуса R=bс. Соединив точку пересечения "d" и "е" этих окружностей получим прямую, проходящую через точку А перпендикулярно прямой "а".

Доказательство:

Хорда de является общей хордой пересекающихся окружностей, следовательно, она перпендикулярна прямой, соединяющей центры этих окружностей (свойство). Эта хорда проходит через точку А на прямой "а", поскольку она равноудалена от точек "b" и "с", а точка А делит отрезок bс пополам по построению.


Через данную точку, принадлежащую данной прямой, проведите прямую, перпендикулярную этой прямой.
4,8(28 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ