Объяснение:
АВСД -прямоугольная трапеция ,ВС=4√2 , ∠А=45°, ∠Д=90°, АС-биссектриса ∠А.
1)Т.к АС-биссектриса, то ∠САД=∠САВ.
2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
3)Т.к. ВК⊥АД, то ДК=4√2.
4)ΔДВК-прямоугольный, по т. Пифагора ДВ²=КВ²+КД²,
ДВ²=16+16*2,
ДВ²=3*16
ДВ=4√3
1)8 см, 2)5 см 3)6 см 4)? 5)14 см 6)?
Объяснение:
1) по свойству угла 30 градусов, катет лежащий напротив угла 30 градусов равен 1 \ 2 гипотенузе,тогда АВ=2ВС=2*4=8 см
2)сумма углов в треугольнике равна 180, тогда угол САВ=180-60-90=30. по свойству угла 30 градусов, катет лежащий напротив угла 30 градусов равен 1 \ 2 гипотенузе, тогда ВС=1\2*АВ=5см
3) сумма углов в треугольнике равна 180, тогда угол САВ=180-45-90=45. угол САВ=СВА, тогда треугольник АСВ -равнобедренный, тогда АС=СВ=6 см.
4)
5)треугольник ЕВС. сумма углов в треугольнике равна 180, тогда угол ЕВС=180-60-90=30. по свойству угла 30 градусов, катет лежащий напротив угла 30 градусов равен 1 \ 2 гипотенузе, тогда ЕВ=2ЕС=2*7= 14 см.
треугольник АВЕ. угол АЕВ=180-60=120, как смежный, сумма углов в треугольнике равна 180, тогда угол АВЕ=180-120-30=30. угол ВАЕ=АВЕ, тогда треугольник АВЕ - равнобедренный, тогда АЕ=ЕВ=14 см