М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dianafaizullin1
dianafaizullin1
05.10.2021 17:15 •  Геометрия

2) докажите, что четырехугольник abcd с вершинами в точках a(-2; 1), b(1; 4), с(5; 0), d(2; -3) является прямоугольником ответ:

👇
Ответ:
ekaterinatrushkova
ekaterinatrushkova
05.10.2021
Для того чтобы четырёхугольник являлся прямоугольником, в нём стороны попарно должны быть равными и диагонали равны между собой:|AB| =√( (1 +2)² + (4 -1)²) =√18 = 3√2;|BC| =√( (5-1)² + (0-4)²) = √32 = 4√2;|CD) = √((2 -5)² + (-3 -0)²) = √18 = 3√2;|AD| =√((2+2)² + (-3-1)² ) = √32 = 4√2;|AC| = √( (5 +2)² + (0 -1)²) =√50 = 5√2;|BD| = √(2 -1)² + (-3 -4)²) = √50 = 5√2.
4,4(34 оценок)
Открыть все ответы
Ответ:
prisnik1252
prisnik1252
05.10.2021

Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.

Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать

Объяснение:

4,5(60 оценок)
Ответ:
sashadedarewa
sashadedarewa
05.10.2021
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
4,7(89 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ