Строим сечение. Соединяем точку В с точкой К (серединой SC) Проводим КМ || AB, Соединяем точку М с точкой А Сечение ВКМА- трапеция. КМ- средняя линия треугольника SCD и КМ=1/2 CD=1/2 В треугольнике BSC SK- медиана, но так как треугольник равносторонний, то и высота. По теореме Пифагора BK²=BC²-KC²=1-(1/2)²=3/4. BK=√3/2. Находим площадь равнобедренной трапеции : МК=1/2, АВ=1, ВК=МА=√3/2 ( см рисунок 2) Проводим высоты КН и МР. ВН=РА=1/4 По теореме Пифагора КН²=ВК²-ВН²=(√3/2)²-(1/4)²=3/4-1/16=12/16-1/16=11/16 КН=√11/4
Сделаем и рассмотрим рисунок. Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.⇒ АА₁ =3√ 3 АО=2√ 3 ОА₁ =√ 3 Треугольник СОВ по условию прямоугольный, АА₁ - медиана ΔАВС, СА₁ =ВА₁ ⇒ ОА₁ - медиана прямоугольного треугольника СОВ Медиана прямоугольного треугольника, проведенная из прямого угла к гипотенузе, равна ее половине Следовательно, СА₁ =ВА₁ =ОА₁ =√ 3 и СВ=2√ 3 В₁ - середина АС С₁ - середина АВ В₁ С₁ - средняя линия треугольника АВС Отсюда его медиана АА₁ делится этой средней линией пополам. АМ=АА₁ :2=1,5√ 3 В треугольнике АСА₁ отрезок В₁М является средней линией и равен половине СА₁ В₁М=0,5√ 3 Из прямоугольного ⊿ АМВ₁ найдем АВ₁ по т. Пифагора: АВ₁²=АМ² -В₁М²АВ₁ =√(6,75- 0,75)=√6Точка В₁ - середина АС.СВ1=АВ1=√6 Из прямоугольного треугольника ВСВ₁ по т. Пифагора найдем ВВ₁ ВВ₁ =√(СВ²+СВ₁²)=√(12+6)=√18=3√2 Найдем гипотенузу АВ по т. Пифагора АС=2 АВ₁ =2√6 АВ=√(АС²+ ВС²)=√{ (2√ 6)² +(2√3 )²}=√36=6 вторая медиана СС1 равна половине гипотенузы Δ АВС СС₁ =3, и это меньше, чем 3√2 Следовательно, ВВ₁ - большая из данных медиан и равна 3√2 --- [email protected]
S=9*4=36 (см^2)