Прямая теорема:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Обратная теорема:
Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.
Противоположная теорема:
Если при пересечении двух прямых секущей накрест лежащие углы не равны, то прямые не параллельны.
2.Прямая теорема:
Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
Обратная теорема:
Если две параллельные прямые пересечены секущей, то соответственные углы равны.
Противоположная теорема:
Если при пересечении двух прямых секущей соответственные углы не равны, то прямые не параллельны.
3.Прямая теорема:
Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.
Обратная теорема:
Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Противоположная теорема:
Если при пересечении двух прямых секущей сумма односторонних углов не равна 180°, то прямые не параллельны.
корень из 169 = 13 см
расстояние равно от вершины до основания 13см
2) угол dod1 = 45 градусов, . в треугльника dod1 угол d = 90 градусов, => треугольник dod1 = прямоугольный => угол dod1 = углу od1d => od = dd1 = h. od = 1/2 * db = 1/2* корень из( 144 + 256) = 1/2 * 20 = 10. найдем площадь сечения через формулу 1/2 * od1 * ac. ac = 20, od1 = корень из(100+100) = 10√2 => s acd1 = 1/2 * 20 * 10√2 = 100√
3) проекцию катета отметим как х
проекцию гипотинузы как y
решаем:
х=10*cos60град.=5 дм.
ад=√(100-25)=√75
ав=√(100+100)=√200
y=√(200-75)=√125=15 дм.
ответ:
проекция катета равна 5дм;
проекция гипотенузы равна 15дм.
х=(1-3)/2=-1 у=(-5+1)/2=-2
-1=(2+хD)/2⇒2+xD=-2⇒xD=-4
-2=(3+yD)/2⇒3+yD=-4⇒yD=-7
D(-4;-7)