ответ:
пошаговое решение:
1) наибольший возможный периметр будет у равнобедренного треугольника, так что, если угол при вершине равен 30°, тогда углы при основании будут равны °.
2) найдём боковую сторону по теореме синусов:
3) найдём периметр равнобедренного треугольника.
Найти R, ОВ, ∠М, ∠МВО, ∠МОВ.
Решение: Δ МОВ - прямоугольный (по свойству касательной и радиуса)
∠ М=90° ; ∠МОВ=90-30=60°.
Найдем ОВ по теореме синусов:
sin60\MB=sin90\OB
ОВ=28\√3=20√3\3 см≈11,6 см
МО=1\2 ОВ как катет, лежащий против угла 30°
МО=10√3\3 см≈5,8 см...