Удивительно, если решать эту задачу "в лоб", она очень неприятная (хотя конечно не сложная). Сразу можно написать уравнение √(3^2 + h^2) + √(7^2 + h^2) = 28; и решать его... А вот если мне не охота его решать? Если мне просто противно ковыряться в знаках при возведении в квадрат? Да, как ни странно, задачу эту можно решить на много понятнее и проще, выполняя совсем простенькие вычисления. Пусть длины наклонных x и y. Вот если я поищу их, а не это расстояние h... Ясно, что x^2 - h^2 = 3^2; y^2 - h^2 = 7^2; следовательно y^2 - x^2 = 7^2 - 3^2 = 40; или (y + x)*(y - x) = 40; => 28*(y - x) = 40; => y - x = 10/7; (ну как заказывали...) то есть y = 14 + 5/7; x = 14 - 5/7; (такие системы решают в начальных классах) ну, и подстановка h = √(y^2 - 7^2); дает ответ h = (12/7)*√57; к сожалению, этот ответ верен, я проверил численно :) ну, знаете, иногда трудно поверить, что условие составляли так небрежно, что в ответе получаются какие-то непонятные корни. Приближенно h = 12,942573317607. Здесь важно, что каждый шаг в решении - это очень простое действие, которое легко проверить. Тот самый случай, когда прямой путь намного длиннее окольного.
Найдем сначала вторую сторону прямоугольника 1) пусть одна сторона будет Х ( а их две) , а вторая (мы знаем из условия) =9 (их тоже две) зная периметр ,найдем сторону Х+Х+9+9=26 2Х+18=26 2Х=26-18=8 Х=4 2) зная что одна сторона =4, а вторая =9 ,найдем площадь прямоугольника 9 умножить на 4 = 36 3)мы знаем что площадь квадрата (равна площади прямоугольника ) = 36 Т.к. в квадрате стороны равны и мы знаем что площадь =36, то одна сторона квадрата будет равна корню их 36 т.е. = 6 ( 6 на 6 =36 ) ответ :сторона квадрата =6
1. Точки К, Т и Р лежат попарно в одной плоскости, поэтому соединяем их. КТР - искомое сечение.
2. Пусть К - середина AD, Р - середина СС₁, Т - середина А₁В₁. 1) Т₁С - проекция прямой ТР на плоскость основания. ТР ∩ Т₁С = Е, - это точка пересечения прямой ТР с плоскостью основания. Точки Е и К принадлежат основанию, значит ЕК - след сечения на плоскости основания. ЕК ∩ CD = L KL - отрезок сечения. Точки L и Р лежат в одной плоскости, соединяем. PL - отрезок сечения. 2) Плоскость (АВС) пересекается с плоскостью (АА₁В₁) по прямой АВ. KL ∩ AB = F Точка F принадлежит плоскости (АА₁В₁) и точка Т тоже. FT ∩ AA₁ = M КМ и ТМ - отрезки сечения. 3) Плоскость (АА₁В₁) пересекается с плоскостью (ВВ₁С₁) по прямой ВВ₁. FT ∩ BB₁ = G. Точка G принадлежит плоскости (ВВ₁С₁) и точка Р тоже. GP ∩ B₁C₁ = N. NP и NT - отрезки сечения. KMTNPL - искомое сечение.
√(3^2 + h^2) + √(7^2 + h^2) = 28; и решать его...
А вот если мне не охота его решать? Если мне просто противно ковыряться в знаках при возведении в квадрат? Да, как ни странно, задачу эту можно решить на много понятнее и проще, выполняя совсем простенькие вычисления. Пусть длины наклонных x и y.
Вот если я поищу их, а не это расстояние h...
Ясно, что
x^2 - h^2 = 3^2;
y^2 - h^2 = 7^2;
следовательно
y^2 - x^2 = 7^2 - 3^2 = 40;
или
(y + x)*(y - x) = 40; => 28*(y - x) = 40; => y - x = 10/7; (ну как заказывали...)
то есть y = 14 + 5/7; x = 14 - 5/7; (такие системы решают в начальных классах)
ну, и подстановка h = √(y^2 - 7^2); дает ответ
h = (12/7)*√57;
к сожалению, этот ответ верен, я проверил численно :) ну, знаете, иногда трудно поверить, что условие составляли так небрежно, что в ответе получаются какие-то непонятные корни.
Приближенно h = 12,942573317607.
Здесь важно, что каждый шаг в решении - это очень простое действие, которое легко проверить. Тот самый случай, когда прямой путь намного длиннее окольного.