Равнобедренный треугольник биссектрисами своих углов и радиусами вписанной окружности разбивается на 6 треугольников - А1, А2, В1, В2, В3, В4 Два типа дочерних треугольников Тип А прямоугольный, угол против катета в 8 см (радиуса) равен 60 градусов Его второй катет а 8/а = tg(60°) 8/а = √3 а = 8/√3 см В периметре исходного треугольника участвуют два катета а Тип В Угол при основании исходного треугольника (180-120)/2 = 30° Острый угол в этих треугольниках равен половине, 15° И катет против угла в 15° равен 8 см, радиусу вписанной окружности катет, прилегающий катет b 8/b = tg(15°) b = 8/tg(15°) = 8/(2-√3) избавимся от иррациональности в знаменателе, домножив на (2+√3) b = 8*(2+√3)/(2²-(√3)²) = 8*(2+√3)/(4-3) = 8*(2+√3) см и в периметре исходного треугольника катеты b встречаются 4 раза P = 2a + 4b = 16/√3 + 32(2+√3) = 16/3*(12 + 7√3) см
Равнобедренный треугольник биссектрисами своих углов и радиусами вписанной окружности разбивается на 6 треугольников - А1, А2, В1, В2, В3, В4 Два типа дочерних треугольников Тип А прямоугольный, угол против катета в 8 см (радиуса) равен 60 градусов Его второй катет а 8/а = tg(60°) 8/а = √3 а = 8/√3 см В периметре исходного треугольника участвуют два катета а Тип В Угол при основании исходного треугольника (180-120)/2 = 30° Острый угол в этих треугольниках равен половине, 15° И катет против угла в 15° равен 8 см, радиусу вписанной окружности катет, прилегающий катет b 8/b = tg(15°) b = 8/tg(15°) = 8/(2-√3) избавимся от иррациональности в знаменателе, домножив на (2+√3) b = 8*(2+√3)/(2²-(√3)²) = 8*(2+√3)/(4-3) = 8*(2+√3) см и в периметре исходного треугольника катеты b встречаются 4 раза P = 2a + 4b = 16/√3 + 32(2+√3) = 16/3*(12 + 7√3) см
90°+2х+х=180°
3х=90°
Х=30°
Т.к. х=30°, то 2х= 60°
Отв: угол А=30°
угол В=60°