В равнобедренном треугольнике АВС с основанием АС, ВН - высота. Найдите ВН, если периметр треугольника АВС равен 48 см,
а периметр треугольника ВНС равен 32 см.
ответ или решение1
Так как треугольник ABC равнобедренный и его периметр равен 48, значит AB = BC, а AC = 48 - 2BC.
Высота BH делит AC пополам, соответственно, AH = HC = (48 - 2BC) / 2.
Площадь треугольника BHC равен 32 см.
Составляем уравнение:
BC + (48 - 2BC) / 2 + BH = 32;
Решаем уравнение:
2BC / 2 + (48 - 2BC) / 2 + BH = 32;
(2BC + 48 - 2BC) / 2 + BH = 32;
48 / 2+BH = 32;
24 + BH = 32;
BH = 32-24;
BH = 8
ответ: длина высоты BH равна 8 см
Объяснение:
корень из 169 = 13 см
расстояние равно от вершины до основания 13см
2) угол dod1 = 45 градусов, . в треугльника dod1 угол d = 90 градусов, => треугольник dod1 = прямоугольный => угол dod1 = углу od1d => od = dd1 = h. od = 1/2 * db = 1/2* корень из( 144 + 256) = 1/2 * 20 = 10. найдем площадь сечения через формулу 1/2 * od1 * ac. ac = 20, od1 = корень из(100+100) = 10√2 => s acd1 = 1/2 * 20 * 10√2 = 100√
3) проекцию катета отметим как х
проекцию гипотинузы как y
решаем:
х=10*cos60град.=5 дм.
ад=√(100-25)=√75
ав=√(100+100)=√200
y=√(200-75)=√125=15 дм.
ответ:
проекция катета равна 5дм;
проекция гипотенузы равна 15дм.
∠АВС=180-150=30-свойство смежных углов
∠BAC=∠BCA=(180-30):2=75-углы при основании
2. а) Рассмотрим треугольник MPT
Пусть ∠P=x
Т.к. ∠M в 3 раза меньше ∠P, то ∠M=x÷3
Т.к. ∠T на 30 меньше ∠P, то ∠T=x-30
Составим уравнение
x+x÷3+x-30=180 -по сумме углов треугольника
2x+x÷3-210=0 |*3 (чтобы избавиться от знаменателя)
6x+x-630=0
7x=630
x=630÷7
x=90°
∠P=90°
∠M=90°÷3=30°
∠T=90°-30=60°
ответ: ∠P=90°∠M=30°∠T=60°