Площадь тр-ка равна половине произведения стороны тр-ка на высоту, опущенную на эту сторону, т.е. S=½*12*8=48 см кв. Согласно следствию из теоремы о средних линиях тр-ка, площадь тр-ка, образованного средними линиями, в 4 раза меньше площади исходного тр-ка, т.е. равна 12 см кв.
2. биссектрисы углов прямоугольника образуют углы 45°, поэтому тр-к ВКС - равнобедренный. Тр-к СДК - прямоугольный равнобедренный, поэтому КД=СД=6 см. Также находим, что АК=6 см. Значит АД=ВС=12 см. По т-ме Пифагора найдем, что СК=ВК=6√2 см. Найдем площадь тр-ка ВКС. S=½*АВ*СК*sin45=½*12*6√2*1/√2=36 см кв.
1. Центром окружности является точка пересечения биссектрис треугольника, продлим AO и ОС до точек Н и С, тогда АН и СЕ - биссектрисы треугольника ABC;
2. По свойствам биссектрисы следует, что она делит углы треугольника пополам, то есть AH делит угол BAC на равные углы BAH = HAC = 20°, а биссектриса CE делит угол BCA на равные углы BCE = ECA = 25°;
3. Рассмотрим треугольник AOC: сумма углов треугольника 180°, тогда угол О = 180° - (HAC + ECA) = 180-45=135°;