Треугольник АВС, АВ=ВС=10, АС = 16, точка М - точка пересечения биссектрис треугольника - центр вписанной окружности, точка К - цент пересечения серединных перпендикуляров - центр описанной окружности, ВН - высота треугольника на АС, МН - радиус вписанной окружности, ВК - радиус описанной окружности и лежит за пределами треугольника, угол В - тупой,
АН=НС=16/2=8, ВН = корень (АВ в квадрате - АН в квадрате) = корень(100-64)=6
Полупериметр = (10+10+16)/2=18
Площадь треугольника = 1/2АС х ВН = 8 х 6=48
радиус вписанной = площадь/полупериметр = 48/18=2,67 = МН
радиус описанной = произведение сторон / 4 х площадь = 10 х 10 х 16 / 4 х 48= 8,33=ВК
расстояние между центрами = ВК - ВН+МН=8,33-6+2,67=5
Объяснение:
Знайдем кут АВО.Кут ОВС=90°(як кут радіуса і дотичної).
Кут ОВС=кут АВС+кут АВО.Тому кут АВО=Кут ОВС-кут АВС=90°-70°=20°
Кут АВО=куту ВАО,як кути при основі рівнобедренного трикутника ΔАОВ.Тому кут АОВ=180°-2*кут АВО=180°-2*20°=180°-40°=140°
№2
Проведем додатково радіус ОВ.ΔАОВ- рівнобедренний,з основою ВС.Кути при основі рівні ,тому кут ВОС=180°-кутОСВ*2= 180°-60°*2=60°.
Кут ВОС є зовнішним для рівнобедренного ΔАОВ,
тому кут А+кут АВО= куту ВОС.Але кут А=кут АВО(як кути при основі).
кут А= кут ВОС:2=60°:2=30° .
Отже ΔАВС-прямокутний,де ВС-катет ,який лежить проти кута 30°.Він дорівнює половині гіпотенузи.ВС=1/2АС=10:2=5 см
вся окружность 360, дуга acb = 200
дуга AB=360-200=160
AOB=AB=160(т.к. AOB центральный угол)
Все