пусть середина стороны АВ т. К
пересечением пл. (альфа) и пл. треугольника (АВС) является прямая k
прямая k параллельна стороне ВС
в противном случае, она должна пересечь прямую(ВС)
НО точка пересечения должна принадлежать также пл. (альфа)
а это НЕВОЗМОЖНО -
пл. (альфа) и ВС не имеют точек пересечения - по условию они параллельны
значит прямая k ПАРАЛЛЕЛЬНА ВС
прямая k является секущей сторон АВ и АС и делит их на пропорциональные отрезки
отсюда следует , что прямая k и плоскость альфа проходит также через середину стороны АС.
отрезок прямой k (между сторонами АВ и АС)- это средняя линия треугольника АВС
Пусть треугольник будет АВС с прямым углом С, а высота, опущенная из вершины прямого угла, СД, тогда
Дано: ВД = 16см, АД = 9см, и нужно найти ВС.
Гипотенуза тр-ка АВС АВ = ВД + АД = 16 + 9 = 25.
Известно, что высота, опущенная из вершины прямого угла разбивает прямоугольный треугольник на два треугольника, подобных исходному, поэтому
тр-к АВС подобен тр-ку СВД и соответствующие стороны этих тр-ков пропорциональны:
АВ:ВС = ВС:ВД
ВС² = АВ·ВД
ВС² = 25·16
ВС = 5·4
ВС = 20
ответ: больший катет треугольника равен 20см
Тогда длина образующей равна L = r/cosβ.
Сечение представляет собой равнобедренный треугольник с углом α при вершине. Боковые стороны равны длине образующей L. Основание этого треугольника a = 2 L·sin (0.5α) = 2r·sin(0.5α)/cosβ
Высота этого треугольника h = L· cos(0.5α) = r·cos(0.5α)/cosβ
Площадь этого треугольника
S = 0.5 a·h = 0.5·2r·sin(0.5α)/cosβ · r·cos(0.5α)/cosβ = 0.5r²·sinα/cos²β