М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Elya100000
Elya100000
06.08.2021 21:47 •  Геометрия

Величина одного из угла равнобедренного треугольника рвана 80 градусов. другие углы треугольника будут равны

👇
Ответ:
idzzzid666
idzzzid666
06.08.2021
И они будут по 50 градусов
4,6(19 оценок)
Открыть все ответы
Ответ:
yogurtq2018
yogurtq2018
06.08.2021

25. 7 : 8

Объяснение:

24. Проведём общую касательную к окружностям в точке O. Для меньшей окружности угол между касательной и хордой OC равен половине дуги OC, то есть равен вписанному углу ∠OBC. Для большей окружности угол между касательной и хордой OC₁ равен половине дуги OC₁, то есть равен вписанному углу ∠OB₁C₁. Поскольку хорды OC и OC₁ лежат на одной прямой, угол между касательной и этими хордами один и тот же. Углы ∠OBC и ∠OB₁C₁ равны одному и тому же углу, значит, они равны между собой. Тогда BC || B₁C₁.

По теореме синусов \dfrac{BC}{\sin{\angle{O}}}=2r,\dfrac{B_1C_1}{\sin{\angle{O}}}=2R\Rightarrow \dfrac{BC}{B_1C_1}=\dfrac{r}{R}. Поскольку радиусы не равны, то и BC ≠ B₁C₁.

Противолежащие стороны четырёхугольника параллельны и не равны, следовательно, это трапеция, что и требовалось доказать.

25. Продлим биссектрису DF до пересечения с прямой BC (точку пересечения обозначим S), проведём высоту CH в треугольнике DCS. Обозначим площади следующим образом: S_{ADF}=S_1,S_{BCDF}=S_2,S_{BFC}=S_3.

Заметим, что ∠ADS = ∠DSC как накрест лежащие, ∠ADS = ∠SDC по условию. Тогда ∠DSC = ∠SDC ⇒ треугольник DCS равнобедренный ⇒ DH = HS.

Треугольники ADF и BSF подобны по вертикальным углам ∠AFD и ∠BFS и накрест лежащим углам ∠ADF и ∠FSB с коэффициентом подобия k = AF : FB = 2. Тогда и DF : FS = 2, а \dfrac{S_1}{S_3}=k^2=4\Leftrightarrow S_1=4S_3.

Треугольники CHS и BFS подобны по общему углу ∠S и соответственным прямым углам ∠CHS и ∠BFS. Коэффициент подобия k=\dfrac{HS}{FS}=\dfrac{\frac{DS}{2}}{FS}=\dfrac{DS}{2FS}=\dfrac{DF+FS}{2FS}=\dfrac{DF}{2FS}+\dfrac{FS}{2FS}=\dfrac{2}{2}+\dfrac{1}{2}=\dfrac{3}{2}. Тогда \dfrac{S_{CHS}}{S_3}=k^2=\dfrac{9}{4}\Leftrightarrow S_{CHS}=\dfrac{9}{4}S_3.

CH — медиана треугольника DCS, значит, S_{CHD}=S_{CHS}\Rightarrow S_{DCS}=2S_{CHS}=\dfrac{9}{2}S_3. Но S_{DCS}=S_2+S_3\Leftrightarrow S_2=S_{DCS}-S_3=\dfrac{9}{2}S_3-S_3=\dfrac{7}{2}S_3.

Искомое отношение \dfrac{S_2}{S_1}=\dfrac{\frac{7}{2}S_3}{4S_3}=\dfrac{7}{8}.


Две задачи по геометрии ОГЭ 24.Окружности, радиусы которых равны r и R, касаются внутренним образом
Две задачи по геометрии ОГЭ 24.Окружности, радиусы которых равны r и R, касаются внутренним образом
4,6(14 оценок)
Ответ:
pav9
pav9
06.08.2021

ответ: 1 - 30°.

2 - 9см

Объяснение: 1 - сумма углов треугольника равна 180°,в прямоугольном треугольнике обязательно есть угол 90°,следовательно 180°-90°-60°=30°.

2 - по теореме о соотношениях сторон и углов прямоугольного треугольника,сторона,лежащая напротив угла в 30° = половине гипотенузы.Если длина этого катета a, то длина гипотенузы 2a

Второй катет b найдём по Пифагору

a² + b² = (2a)²

a² + b² = 4a²

b² = 3a²

b = a√3 см

√3 больше 1, так что из двух катетов катет a, против угла в 30 градусов, является самым коротким.

Найдём длину короткого катета

а + 2а = 27

3а = 27

а = 9 см

4,6(7 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ