М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mops123321
mops123321
17.07.2021 21:10 •  Геометрия

Вравнобедреном треугольнике абс с основанием ас проведена биссиктриса сд. найдите углы треугольника абс если угол адс равен: 1)60; 2)75; 3)альфа

👇
Ответ:
Evo4ka111
Evo4ka111
17.07.2021
3.
ΔABC :    AB = BC;  CD - биссектриса.  ∠ADC = α

ΔABC - равнобедренный ⇒ 
∠BAC = ∠BCA    ⇒      ∠ACD = 1/2 BCA = 1/2 BAC
ΔADC
∠ADC + ∠BAC + ∠ACD = 180°
α + ∠BAC + 1/2 ∠BAC = 180°
3/2 ∠BAC = 180° - α
∠BAC = (180° - α)*2/3
∠BAC = 120° - 2/3 α             ∠BCA = ∠BAC = 120° - 2/3 α
∠B = 180° - (∠BCA + ∠BAC) = 180° - 2*(120° - 2/3 α) =
= 180° - 240° + 4/3 α = 4/3 α - 60°
ответ:  ∠BCA = ∠BAC = 120° - 2/3 α; ∠B = 4/3 α - 60°

Для решения 1 и 2 пунктов достаточно в полученные формулы вместо α  подставить соответствующие углы 60° и 75°

1. ΔABC :    AB = BC;  CD - биссектриса.  ∠ADC = 60°
∠BCA = ∠BAC = 120° - 2/3 * 60° = 120° - 40° = 80°
∠B = 4/3 * 60° - 60° = 20°
ответ: ∠BCA = ∠BAC = 80°;  ∠B = 20°

2. ΔABC :    AB = BC;  CD - биссектриса.  ∠ADC = 75°
∠BCA = ∠BAC = 120° - 2/3 * 75° = 120° - 50° = 70°
∠B = 4/3 * 75° - 60° = 40°
ответ: ∠BCA = ∠BAC = 70°;  ∠B = 40°
Вравнобедреном треугольнике абс с основанием ас проведена биссиктриса сд. найдите углы треугольника
4,8(26 оценок)
Открыть все ответы
Ответ:
диана27th
диана27th
17.07.2021

Построим отрезок BC длины a. Центр O описанной окружности треугольника ABC является точкой пересечения двух окружностей радиуса R с центрами в точках B и C. Выберем одну из этих точек пересечения и построим описанную окружность S треугольника ABC. Точка A является точкой пересечения окружности S к прямой, параллельной прямой BC и отстоящей от нее на расстояние ha (таких прямых две).

8.2.

Построим точки A1 и B1 на сторонах BC и AC соответственно так, что  BA1 : A1C = 1 : 3 и AB1 : B1C = 1 : 2. Пусть точка X лежит внутри треугольника ABC. Ясно, что SABX : SBCX = 1 :  2 тогда и только тогда, когда точка X лежит на отрезке BB1, и SABX : SACX = 1 : 3 тогда и только тогда, когда точка X лежит на отрезке AA1. Поэтому искомая точка M является точкой пересечения отрезков AA1 и BB1.

8.3.

Пусть O — центр данной окружности,  AB — хорда, проходящая через точку P,  M — середина AB. Тогда |AP – BP| = 2PM. Так как РPMO = 90°, точка M лежит на окружности S с диаметром OP. Построим хорду PM окружности S так, что PM = a/2 (таких хорд две). Искомая хорда задается прямой PM.

8.4.

Пусть R — радиус данной окружности,  O — ее центр. Центр искомой окружности лежит на окружности S радиуса |R ± r| с центром O. С другой стороны, ее центр лежит на прямой l, параллельной данной прямой и удаленной от нее на расстояние r (таких прямых две). Любая точка пересечения окружности S и прямой l может служить центром искомой окружности.

8.5.

Пусть R — радиус окружности S,  O — ее центр. Если окружность S высекает на прямой, проходящей через точку A, хорду PQ и M — середина PQ, то OM2 = OQ2 – MQ2 = R2 – d2/4. Поэтому искомая прямая касается окружности радиуса  

Ц

 

R2 – d2/4

 

с центром O.

8.6.

Возьмем на прямых AB и CD точки E и F так, чтобы прямые BF и CE имели заданные направления. Рассмотрим всевозможные параллелограммы PQRS с заданными направлениями сторон, вершины P и R которых лежат на лучах BA и CD, а вершина Q — на стороне BC (рис. 8.1). Докажем, что геометрическим местом вершин S является отрезок EF. В самом деле,  

SR

EC

=   PQ

EC

=   BQ

BC

=   FR

FC

, т. е. точка S

4,6(25 оценок)
Ответ:
кари345
кари345
17.07.2021

Фактически задача сводится к нахождению координат вектора CD.

Мы знаем, что СD перпендикулярно AB. И CD проходит через точку C.

Условие перпендикулярности -> косинус угла между векторами CD и AB равен нулю.

Формула косинуса угла между векторами - cos(AB\ \^;CD)=\frac{x_{1}x_{2}+y_{1}y_{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}}\sqrt{x_{2}^{2}+y_{2}^{2}}}

AB={-1+5;4-1}={4;3}

CD={x2-3;y2-2}

Составим уравнение прямой АВ: \frac{x+1}{4}=\frac{y-4}{3} (*)

Подставляя вместо x1 и y1 в формулу косинуса 4 и 3 соответственно получим:

4(x2-3)+3(y2-2)=0

Также точка D принадлежит прямой AB, а значит x2 и y2 удовлетворяют уравнению (*).

Решаем полученную систему уравнений.

\left \{ {{4(x2-3)+3(y2-2)=0} \atop {\frac{x2+1}{4}=\frac{y2-4}{3}}} \right.

Мне лень решать - сами решите. Как найдёте x2 и y2 - подставьте их и найдите координаты вектора CD. Зная координаты направляющего вектора и точку, через которую проходит прямая, легко составить уравнение прямой.

Оно выглядит так: \frac{x-x_{0}}{x_{p}}=\frac{y-y_{0}}{y_{p}}, где x_{p}, y_{p} - координаты напрвляющего вектора (в нашем случае вектора CD), а х0 и у0 - координаты точки, через которую проходит прямая (в нашем случае С или D - на выбор)

4,7(71 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ