Теорема про три перпендикуляри. Якщо пряма, проведена на площині через основу похилої, перпендикулярна до її проекції, то вона перпендикулярна і до похилої. І навпаки, якщо пряма на площині перпендикулярна до похилої, то вона перпендикулярна і до проекції похилої.На малюнку 415 АН - перпендикуляр до площини α; АМ - похила. Через основу похилої - точку М проведено пряму а. Теорема про три перпендикуляри стверджує, що якщо а НМ, то а АМ, і навпаки, якщо а АМ, то а НМ.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
Симметрия относительно точки называется центральная симметрия : чертишь фигуру внутри или снаружи нее ставишь точку о, соединяешь все точки фигуры с точкой о и продолжаешь за эту точку, измеряешь расстояние от каждой точки до точки о и такое же расстояние откладываешь на продолжениях соответствующих прямых, соединяешь полученные точки. симметрия относительно прямой еащывается осевая симметрия : строишь фигуру, за этой фигурой с любой стороны чертишь прямую (не важно в какую сторону она наклонена) , от каждой точки фигуры ппроводишь перпендикуляр к данной прямой и продолжаешь его за прямую, измеряешь расстояние от точки до прямой и отмечаешь такое же расстояние от прямой в противоположную сторону на продолжении прямой, соединяешь эти точки.поворот: чертишь фигуру, за этой фигурой ставишь точку о, соединяешь все точки фигуры с этой точкой о, прикладываешь транспрортир и откладываешь столько градусов сколько хочешь (со всеми сторонами должен быть один и тот же угол) деляешь это со всеми точками фигуры, соединяешь полученые точки. перенос: чертишь фигуру, справа от чертежа чертишь вектор определенной длины в любую сторону, все точки фигуры переносишь на этот вектор ( т е в определенном заданном раннее направлении, на определенный промежуток)содиняешь эти точки