Богом точка касания окружности, вписанной в прямоугольную трапецию, делит ее большее основание на отрезки длиной 2 см и 4 см. вычислите периметр трапеции.
Дано: ABCD (AD || BC, AB ⊥ AD) - прямоугольная трапеция, К, М, N, Р - точки касания вписанной окружности к соответствующим сторонам трапеции. АР = 2 см, РD = 4 см. О - центр вписанной окружности.
Найти: Р (ABCD) - ?
По свойству касательных, проведенных из одной точки, получим: АР = АК = 2 см, ND = PD = 4 см.
ОР ⊥ АD, поэтому АКОР - квадрат.
ОР = ОМ, поэтому КВМО = АКРО, отсюда ВК = ВМ = АР = 2 см.
Пусть х см - СМ. Тогда по свойству касательных, проведенных из одной точки, получим: СМ = CN = х см.
Построим высоту CL трапеции и получим: LD = PD - PL = (4 - x) см.
Рассмотрим прямоугольный треугольник CLD (∠L = 90°): CD = ND + CN = (4 + х) см, CL = 4 см.
Определение: Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой. Линейный угол двугранного угла - это угол, образованный двумя лучами, которые имеют общее начало, лежащее на ребре двугранного угла, и проведенными в обеих гранях перпендикулярно этому ребру. Обе плоскости сечения содержат в себе диагональ куба А1С, которая является линией их пересечения. Соотношение линейных величин у кубов одинаковы. Пусть данный куб единичный, где его ребро равно 1. Тогда его диагональ А1С по формуле диагонали куба равна √3, а диагональ его грани равна √2. А1С=√3 А1В=√2 Искомый угол ∠В1КН, где В1К - высота треугольник аА1В1С. В1Н - перпендикуляр из В1 на плоскость А1СВ, в частности, В1Н перпендикулярен А1В. Из треугольник аА1В1С найдем В1К. Треугольники А1В1С и КВ1С подобны. А1В1:В1К=А1С:В1С 1/В1К=√3/√2 Грани куба - равные квадраты. Диагонали квадрата перпендикулярны и точкой пересечения делятся пополам. В1Н ⊥ А1В, ⇒ является половиной диагонали грани куба и равна ( √2):2 В1К ⊥ А1С, НК ⊥ А1С. Треугольник В1НК - прямоугольный. cos ∠ НВ1К=В1Н:В1К cos ∠НВ1К=(√2/2):√2/√3=√3/2, и это косинус угла 30º. Значит, угол В1КН, как второй острый угол прямоугольного треугольника, равен 90º-30º=60º
Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
Дано: ABCD (AD || BC, AB ⊥ AD) - прямоугольная трапеция, К, М, N, Р - точки касания вписанной окружности к соответствующим сторонам трапеции. АР = 2 см, РD = 4 см. О - центр вписанной окружности.
Найти: Р (ABCD) - ?
По свойству касательных, проведенных из одной точки, получим:
АР = АК = 2 см, ND = PD = 4 см.
ОР ⊥ АD, поэтому АКОР - квадрат.
ОР = ОМ, поэтому КВМО = АКРО, отсюда ВК = ВМ = АР = 2 см.
Пусть х см - СМ. Тогда по свойству касательных, проведенных из одной точки, получим: СМ = CN = х см.
Построим высоту CL трапеции и получим: LD = PD - PL = (4 - x) см.
Рассмотрим прямоугольный треугольник CLD (∠L = 90°): CD = ND + CN = (4 + х) см, CL = 4 см.
По теореме Пифагора имеем:
CD² - LD² = CL²;
(4 + x)² - (4 - x)² = 4²;
4² + 8x + x² - 4² + 8x - x² = 16;
16x = 16
x = 1
Далее имеем: CD = 4 + 1 = 5 (см), ВС = 2 + 1 = 3 (см), АВ = 2 + 2 = 4 (см), АD = 4 + 2 = 6 (см).
P (ABCD) = CD + AD + AB + BC = 5 + 6 + 4 + 3 = 18 (см)
ответ: 18 см