М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Любознайка09
Любознайка09
30.06.2020 17:45 •  Геометрия

)при пересечении двух параллельных прямых третьей разность внутренних односторонних углов оказалась равной 52 градуса . укажите больший из этих углов

👇
Ответ:
DanielB2008
DanielB2008
30.06.2020
Сумма односторонних углов 180°
Обозначим углы, как х и у
Тогда
х+у=180°
х-у=52°
Выразим
х=52+у
Подставим
52+у+у=180
2у+52=180
2у=180-52=128
у=128/2=64°
х=52+у=64+52=116°
А значит угол обозначенный, как х - больше, чем угол обозначенный, как у.
ответ:∠х>∠у
4,5(22 оценок)
Открыть все ответы
Ответ:
ep53
ep53
30.06.2020

Объяснение:

1) Все грани куба являются квадратами.

По свойствам квадрата диагонали взаимно перпендикулярны. В нашем случае АС  ⟂ BD.

2) DD1 ⟂ DC по условию и DD1 ⟂ DA, DC ⋂ DA = D, тогда по признаку перпендикулярности прямой и плоскости DD1 ⟂ (ABC).

3) Так как DD1 ⟂ (ABC) , то она перпендикулярна любой прямой, лежащей в этой плоскости, в том числе DD1 ⟂ AC.

4) Получили, что

АС  ⟂ BD, AC ⟂ DD1, BD ⋂ DD1 = D, тогда по признаку  перпендикулярности прямой и плоскости АС ⟂ (ВВ1D1), что и требовалось доказать.


куб. Докажите, что прямая АС перпендикулярна к плоскости, которая проходит через точки B,B1,D1​
4,4(46 оценок)
Ответ:
mottorinanadia7
mottorinanadia7
30.06.2020

1.Преобразования плоскости

Преобразованием плоскости называют правило, с которого каждой точке плоскости ставится в соответствие точка этой же плоскости. ... Точку F(M) называют образом точки M при преобразовании F, а точку M называют прообразом точки F(M) при преобразовании F.

2.Преобразование фигуры F в фигуру F', при котором каждая ее точка X переходит в точку X', симметричную относительно данной точки О, называется преобразованием симметрии относительно точки О. При этом фигуры F и F' называются симметричными относительно точки О.

4.Другое определение: фигура центрально-симметрична, если для каждой точки фигуры точка, симметричная ей относительно центра симметрии, тоже принадлежит фигуре. Примеры центрально-симметричных фигур: окружность, параллелограмм, правильная шестиконечная звезда.

5.Центра́льной симметри́ей относительно точки A называют преобразование пространства, переводящее точку X в такую точку X′, что A — середина отрезка XX′. Центральная симметрия с центром в точке A обычно обозначается через, в то время как обозначение можно перепутать с осевой симметрией.

3.


1. Что такое преобразование плоскости? 2. Какое преобразование называется симметрией? 3. Сформулируй
4,6(20 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ