В решение не уверен))) немного мудрёная задачка... скорей всего, я очень сильно намудрил с вписанными углами, сейчас просматривая записи и начинаю очень сильно сомневаться, что данный угол, именно таким можно найти)
угол АВС равняется 93 градусам, данный угол лежит на отрезке окружности АС, следовательно, АС = 93 * 2 = 186 ( т.к. угол АВС - вписанный, значит, он будет равняться половине дуги на которую он опирается)
Угол АДС так же лежит на отрезке окружности АС, значит, он будет как и угол АВС равен 93 градусам.
Угол АДС равен 186 : 2 = 93 градуса ( т.к. угол АДС - вписанный, значит, он будет равняться половине дуги на которую он опирается) ответ: 93 градуса
Найти: площадь треугольника ΔABT.
Решение:
(см. также рисунок)
Высота AE = AT + TE = 15 + 12 = 27 известна. Надо найти основание ЕВ.
Воспользуемся свойством биссектрисы: биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам, т.е.:
По теореме Пифагора:
Площадь треугольника ΔABE равна:
Площадь треугольника ΔTBE равна:
Площадь треугольника ΔABT равна:
ответ: 270